Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Proteome Res ; 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38533909

RESUMEN

Quantitation of proteins using liquid chromatography-tandem mass spectrometry (LC-MS/MS) is complex, with a multiplicity of options ranging from label-free techniques to chemically and metabolically labeling proteins. Increasingly, for clinically relevant analyses, stable isotope-labeled (SIL) internal standards (ISs) represent the "gold standard" for quantitation due to their similar physiochemical properties to the analyte, wide availability, and ability to multiplex to several peptides. However, the purchase of SIL-ISs is a resource-intensive step in terms of cost and time, particularly for screening putative biomarker panels of hundreds of proteins. We demonstrate an alternative strategy utilizing nonhuman sera as the IS for quantitation of multiple human proteins. We demonstrate the effectiveness of this strategy using two high abundance clinically relevant analytes, vitamin D binding protein [Gc globulin] (DBP) and albumin (ALB). We extend this to three putative risk markers for cardiovascular disease: plasma protease C1 inhibitor (SERPING1), annexin A1 (ANXA1), and protein kinase, DNA-activated catalytic subunit (PRKDC). The results show highly specific, reproducible, and linear measurement of the proteins of interest with comparable precision and accuracy to the gold standard SIL-IS technique. This approach may not be applicable to every protein, but for many proteins it can offer a cost-effective solution to LC-MS/MS protein quantitation.

2.
Clin Chem Lab Med ; 62(6): 1206-1216, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38253336

RESUMEN

OBJECTIVES: Many reverse transcription polymerase chain reaction (RT-PCR) methods exist that can detect SARS-CoV-2 RNA in different matrices. RT-PCR is highly sensitive, although viral RNA may be detected long after active infection has taken place. SARS-CoV-2 proteins have shorter detection windows hence their detection might be more meaningful. Given salivary droplets represent a main source of transmission, we explored the detection of viral RNA and protein using four different detection platforms including SISCAPA peptide immunoaffinity liquid chromatography-mass spectrometry (SISCAPA-LC-MS) using polyclonal capture antibodies. METHODS: The SISCAPA-LC MS method was compared to RT-PCR, RT-loop-mediated isothermal amplification (RT-LAMP), and a lateral flow rapid antigen test (RAT) for the detection of virus material in the drool saliva of 102 patients hospitalised after infection with SARS-CoV-2. Cycle thresholds (Ct) of RT-PCR (E gene) were compared to RT-LAMP time-to-positive (TTP) (NE and Orf1a genes), RAT optical densitometry measurements (test line/control line ratio) and to SISCAPA-LC-MS for measurements of viral protein. RESULTS: SISCAPA-LC-MS showed low sensitivity (37.7 %) but high specificity (89.8 %). RAT showed lower sensitivity (24.5 %) and high specificity (100 %). RT-LAMP had high sensitivity (83.0 %) and specificity (100.0 %). At high initial viral RNA loads (<20 Ct), results obtained using SISCAPA-LC-MS correlated with RT-PCR (R2 0.57, p-value 0.002). CONCLUSIONS: Detection of SARS-CoV-2 nucleoprotein in saliva was less frequent than the detection of viral RNA. The SISCAPA-LC-MS method allowed processing of multiple samples in <150 min and was scalable, enabling high throughput.


Asunto(s)
COVID-19 , Espectrometría de Masas , Técnicas de Diagnóstico Molecular , ARN Viral , SARS-CoV-2 , Saliva , Humanos , Saliva/virología , Saliva/química , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/inmunología , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/virología , ARN Viral/análisis , Espectrometría de Masas/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa/métodos , Masculino , Sensibilidad y Especificidad , Femenino , Persona de Mediana Edad , Fosfoproteínas/análisis , Fosfoproteínas/inmunología , Proteínas de la Nucleocápside de Coronavirus/análisis , Proteínas de la Nucleocápside de Coronavirus/inmunología , Antígenos Virales/análisis , Antígenos Virales/inmunología , Adulto , Cromatografía Liquida/métodos
3.
BMC Cardiovasc Disord ; 24(1): 25, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172712

RESUMEN

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a heterogenous multi-system syndrome with limited efficacious treatment options. The prevalence of Type 2 diabetes (T2D) continues to rise and predisposes patients to HFpEF, and HFpEF remains one of the biggest challenges in cardiovascular medicine today. Novel therapeutic targets are required to meet this important clinical need. Deep phenotyping studies including -OMIC analyses can provide important pathogenic information to aid the identification of such targets. The aims of this study were to determine; 1) the impact of a low-energy diet on plasma sphingolipid/ceramide profiles in people with T2D compared to healthy controls and, 2) if the change in sphingolipid/ceramide profile is associated with reverse cardiovascular remodelling. METHODS: Post-hoc analysis of a randomised controlled trial (NCT02590822) including adults with T2D with no cardiovascular disease who completed a 12-week low-energy (∼810 kcal/day) meal-replacement plan (MRP) and matched healthy controls (HC). Echocardiography, cardiac MRI and a fasting blood for lipidomics were undertaken pre/post-intervention. Candidate biomarkers were identified from case-control comparison (fold change > 1.5 and statistical significance p < 0.05) and their response to the MRP reported. Association between change in biomarkers and change indices of cardiac remodelling were explored. RESULTS: Twenty-four people with T2D (15 males, age 51.1 ± 5.7 years), and 25 HC (15 male, 48.3 ± 6.6 years) were included. Subjects with T2D had increased left ventricular (LV) mass:volume ratio (0.84 ± 0.13 vs. 0.70 ± 0.08, p < 0.001), increased systolic function but impaired diastolic function compared to HC. Twelve long-chain polyunsaturated sphingolipids, including four ceramides, were downregulated in subjects with T2D at baseline. Three sphingomyelin species and all ceramides were inversely associated with LV mass:volume. There was a significant increase in all species and shift towards HC following the MRP, however, none of these changes were associated with reverse cardiac remodelling. CONCLUSION: The lack of association between change in sphingolipids/ceramides and reverse cardiac remodelling following the MRP casts doubt on a causative role of sphingolipids/ceramides in the progression of heart failure in T2D. TRIAL REGISTRATION: NCT02590822.


Asunto(s)
Diabetes Mellitus Tipo 2 , Insuficiencia Cardíaca , Remodelación Ventricular , Adulto , Femenino , Humanos , Masculino , Persona de Mediana Edad , Biomarcadores , Ceramidas , Ayuno , Esfingolípidos , Volumen Sistólico/fisiología , Función Ventricular Izquierda
4.
Nano Lett ; 23(21): 9677-9682, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37902816

RESUMEN

In recent years, molecularly imprinted polymer nanoparticles (nanoMIPs) have proven to be an attractive alternative to antibodies in diagnostic and therapeutic applications. However, several key questions remain: how suitable are intracellular epitopes as targets for nanoMIP binding? And to what extent can protein function be modulated via targeting specific epitopes? To investigate this, three extracellular and three intracellular epitopes of epidermal growth factor receptor (EGFR) were used as templates for the synthesis of nanoMIPs which were then used to treat cancer cells with different expression levels of EGFR. It was observed that nanoMIPs imprinted with epitopes from the intracellular kinase domain and the extracellular ligand binding domain of EGFR caused cells to form large foci of EGFR sequestered away from the cell surface, caused a reduction in autophosphorylation, and demonstrated effects on cell viability. Collectively, this suggests that intracellular domain-targeting nanoMIPs can be a potential new tool for cancer therapy.


Asunto(s)
Impresión Molecular , Nanopartículas , Polímeros Impresos Molecularmente , Epítopos , Polímeros/química , Nanopartículas/química , Receptores ErbB/metabolismo
5.
Sci Adv ; 9(32): eadh0485, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566664

RESUMEN

Metabolomics, the study of metabolites (small molecules of <1500 daltons), has been posited as a potential tool to explore the past in a comparable manner to other omics, e.g., genomics or proteomics. Archaeologists have used metabolomic approaches for a decade or so, mainly applied to organic residues adhering to archaeological materials. Because of advances in sensitivity, resolution, and the increased availability of different analytical platforms, combined with the low mass/volume required for analysis, metabolomics is now becoming a more feasible choice in the archaeological sector. Additional approaches, as presented by our group, show the versatility of metabolomics as a source of knowledge about the human past when using human osteoarchaeological remains. There is tremendous potential for metabolomics within archaeology, but further efforts are required to position it as a routine technique.


Asunto(s)
Arqueología , Metabolómica , Humanos , Metabolómica/métodos , Genómica , Proteómica
6.
Metabolites ; 13(5)2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-37233629

RESUMEN

Metabolomic approaches, such as in clinical applications of living individuals, have shown potential use for solving questions regarding the past when applied to archaeological material. Here, we study for the first time the potential of this Omic approach as applied to metabolites extracted from archaeological human dentin. Dentin obtained from micro sampling the dental pulp of teeth of victims and non-victims of Yersinia pestis (plague) from a 6th century Cambridgeshire site are used to evaluate the potential use of such unique material for untargeted metabolomic studies on disease state through liquid chromatography hyphenated to high-resolution mass spectrometry (LC-HRMS). Results show that small molecules of both likely endogenous and exogenous sources are preserved for a range of polar and less polar/apolar metabolites in archaeological dentin; however, untargeted metabolomic profiles show no clear differentiation between healthy and infected individuals in the small sample analysed (n = 20). This study discusses the potential of dentin as a source of small molecules for metabolomic assays and highlights: (1) the need for follow up research to optimise sampling protocols, (2) the requirements of studies with larger sample numbers and (3) the necessity of more databases to amplify the positive results achievable with this Omic technique in the archaeological sciences.

7.
J Am Soc Mass Spectrom ; 34(6): 1065-1072, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37155737

RESUMEN

In order for mass spectrometry to continue to grow as a platform for high-throughput clinical and translational research, careful consideration must be given to quality control by ensuring that the assay performs reproducibly and accurately and precisely. In particular, the throughput required for large cohort clinical validation in biomarker discovery and diagnostic screening has driven the growth of multiplexed targeted liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) assays paired with sample preparation and analysis in multiwell plates. However, large scale MS-based proteomics studies are often plagued by batch effects: sources of technical variation in the data, which can arise from a diverse array of sources such as sample preparation batches, different reagent lots, or indeed MS signal drift. These batch effects can confound the detection of true signal differences, resulting in incorrect conclusions being drawn about significant biological effects or lack thereof. Here, we present an intraplate batch effect termed the edge effect arising from temperature gradients in multiwell plates, commonly reported in preclinical cell culture studies but not yet reported in a clinical proteomics setting. We present methods herein to ameliorate the phenomenon including proper assessment of heating techniques for multiwell plates and incorporation of surrogate standards, which can normalize for intraplate variation.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Humanos , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Control de Calidad , Estándares de Referencia
8.
Int J Mol Sci ; 24(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37108360

RESUMEN

Numerous studies have demonstrated the normal tissue-sparing effects of ultra-high dose rate 'FLASH' irradiation in vivo, with an associated reduction in damage burden being reported in vitro. Towards this, two key radiochemical mechanisms have been proposed: radical-radical recombination (RRR) and transient oxygen depletion (TOD), with both being proposed to lead to reduced levels of induced damage. Previously, we reported that FLASH induces lower levels of DNA strand break damage in whole-blood peripheral blood lymphocytes (WB-PBL) ex vivo, but our study failed to distinguish the mechanism(s) involved. A potential outcome of RRR is the formation of crosslink damage (particularly, if any organic radicals recombine), whilst a possible outcome of TOD is a more anoxic profile of induced damage resulting from FLASH. Therefore, the aim of the current study was to profile FLASH-induced damage via the Comet assay, assessing any DNA crosslink formation as a putative marker of RRR and/or anoxic DNA damage formation as an indicative marker of TOD, to determine the extent to which either mechanism contributes to the "FLASH effect". Following FLASH irradiation, we see no evidence of any crosslink formation; however, FLASH irradiation induces a more anoxic profile of induced damage, supporting the TOD mechanism. Furthermore, treatment of WB-PBLs pre-irradiation with BSO abrogates the reduced strand break damage burden mediated by FLASH exposures. In summary, we do not see any experimental evidence to support the RRR mechanism contributing to the reduced damage burden induced by FLASH. However, the observation of a greater anoxic profile of damage following FLASH irradiation, together with the BSO abrogation of the reduced strand break damage burden mediated by FLASH, lends further support to TOD being a driver of the reduced damage burden plus a change in the damage profile mediated by FLASH.


Asunto(s)
Daño del ADN , Linfocitos , Ensayo Cometa , Linfocitos/efectos de la radiación , Oxígeno , ADN
9.
Sci Rep ; 13(1): 696, 2023 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-36639564

RESUMEN

Metabolomics is a modern tool that aids in our understanding of the molecular changes in organisms. Archaeological science is a branch of archaeology that explores different archaeological materials using modern analytical tools. Human osteoarchaeological material are a frequent finding in archaeological contexts and have the potential to offer information about previous human populations, which can be illuminating about our current condition. Using a set of samples comprising different skeletal elements and bone structures, here we explore for the first time the possibility of extracting metabolites from osteoarchaeological material. Here, a protocol for extraction and measurement of extracted polar and less-polar/apolar metabolites by ultra-high performance liquid chromatography hyphenated to high resolution mass spectrometry is presented to measure the molecules separated after a reversed phase and hydrophilic interaction liquid chromatography column. Molecular information was obtained, showing that osteoarchaeological material is a viable source of molecular information for metabolomic studies.


Asunto(s)
Metabolómica , Humanos , Cromatografía Liquida/métodos , Cromatografía Líquida de Alta Presión/métodos , Metabolómica/métodos , Espectrometría de Masas/métodos , Interacciones Hidrofóbicas e Hidrofílicas
10.
Clin Chem Lab Med ; 61(2): 302-310, 2023 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-36395058

RESUMEN

OBJECTIVES: During 2020, the UK's Department of Health and Social Care (DHSC) established the Moonshot programme to fund various diagnostic approaches for the detection of SARS-CoV-2, the pathogen behind the COVID-19 pandemic. Mass spectrometry was one of the technologies proposed to increase testing capacity. METHODS: Moonshot funded a multi-phase development programme, bringing together experts from academia, industry and the NHS to develop a state-of-the-art targeted protein assay utilising enrichment and liquid chromatography tandem mass spectrometry (LC-MS/MS) to capture and detect low levels of tryptic peptides derived from SARS-CoV-2 virus. The assay relies on detection of target peptides, ADETQALPQRK (ADE) and AYNVTQAFGR (AYN), derived from the nucleocapsid protein of SARS-CoV-2, measurement of which allowed the specific, sensitive, and robust detection of the virus from nasopharyngeal (NP) swabs. The diagnostic sensitivity and specificity of LC-MS/MS was compared with reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) via a prospective study. RESULTS: Analysis of NP swabs (n=361) with a median RT-qPCR quantification cycle (Cq) of 27 (range 16.7-39.1) demonstrated diagnostic sensitivity of 92.4% (87.4-95.5), specificity of 97.4% (94.0-98.9) and near total concordance with RT-qPCR (Cohen's Kappa 0.90). Excluding Cq>32 samples, sensitivity was 97.9% (94.1-99.3), specificity 97.4% (94.0-98.9) and Cohen's Kappa 0.95. CONCLUSIONS: This unique collaboration between academia, industry and the NHS enabled development, translation, and validation of a SARS-CoV-2 method in NP swabs to be achieved in 5 months. This pilot provides a model and pipeline for future accelerated development and implementation of LC-MS/MS protein/peptide assays into the routine clinical laboratory.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Pandemias , COVID-19/diagnóstico , Prueba de COVID-19 , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida , Estudios Prospectivos , Técnicas de Laboratorio Clínico/métodos , Sensibilidad y Especificidad , Péptidos
11.
Nanoscale Adv ; 4(24): 5304-5311, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36540121

RESUMEN

Cellular senescence has proved to be a strong contributor to ageing and age-related diseases, such as cancer and atherosclerosis. Therefore, the protein content of senescent cells is highly relevant to drug discovery, diagnostics and therapeutic applications. However, current technologies for the analysis of proteins are based on a combination of separation techniques and mass spectrometry, which require handling large sample sizes and a large volume of data and are time-consuming. This limits their application in personalised medicine. An easy, quick and inexpensive procedure is needed for qualitative and quantitative analysis of proteins expressed by a cell or tissue. Here, we describe the use of the "snapshot imprinting" approach for the identification of proteins differentially expressed by senescent cells. Molecularly imprinted polymer nanoparticles (MIPs) were formed in the presence of whole cells. Following trypsinolysis, protein epitopes protected by complex with MIPs were eluted from the nanoparticles and analysed by LC-MS/MS. In this work, "snapshot imprinting" was performed parallel to a standard proteomic "shaving approach", showing similar results. The analysis by "snapshot imprinting" identified three senescent-specific proteins: cell division cycle 7-related protein kinase, partitioning defective three homolog B and putative ATP-dependent RNA helicase DHX57, the abundance of which could potentially make them specific markers of senescence. Identifying biomarkers for the future elimination of senescent cells grants the potential for developing therapeutics for age-related diseases.

12.
RSC Adv ; 12(28): 17747-17754, 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35765329

RESUMEN

Determining which cancer patients will be sensitive to a given therapy is essential for personalised medicine. Thus, it is important to develop new tools that will allow us to stratify patients according to their predicted response to treatment. The aim of work presented here was to use molecular imprinting for determining the sensitivity of lung cancer cell lines to ionising radiation based on cell surface proteomic differences. Molecularly imprinted polymer nanoparticles (nanoMIPs) were formed in the presence of whole cells. Following trypsinolysis, protein epitopes protected by complexing with MIPs were eluted from the nanoparticles and analysed by LC-MS/MS. The analysis identified two membrane proteins, neutral amino acid transporter B (0) and 4F2 cell-surface antigen heavy chain, the abundance of which in the lung cancer cells could indicate resistance of these cells to radiotherapy. This proof-of-principle experiments shows that this technology can be used in the discovery of new biomarkers and in development of novel diagnostic and therapeutic tools for a personalised medicine approach to treating cancer.

13.
J Mater Chem B ; 10(35): 6732-6741, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35355036

RESUMEN

Modulation of enzyme activity allows for control over many biological pathways and while strategies for the pharmaceutical design of inhibitors are well established; methods for promoting activation, that is an increase in enzymatic activity, are not. Here we demonstrate an innovative epitope mapping technique using molecular imprinting to identify four surface epitopes of acetylcholinesterase (AChE). These identified epitopes were then used as targets for the synthesis of molecularly imprinted nanoparticles (nanoMIPs). The enzymatic activity of AChE was increased upon exposure to these nanoMIPs, with one particular identified epitope nanoMIP leading to an increase in activity of 47× compared to enzyme only. The impact of nanoMIPs on the inhibited enzyme is also explored, with AChE activity recovering from 11% (following exposure to an organophosphate) to 73% (following the addition of nanoMIPs). By stabilizing the conformation of the protein rather than targeting the active site, the allosteric nature of MIP-induced reactivation suggests a new way to promote enzyme activity, even under the presence of an inhibitor. This method of enzyme activation shows promise to treat enzyme deficiency diseases or in medical emergencies where an external agent affects protein function.


Asunto(s)
Acetilcolinesterasa , Nanopartículas , Epítopos , Polímeros Impresos Molecularmente , Nanopartículas/química , Organofosfatos , Polímeros/química
14.
PLoS One ; 17(2): e0262364, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35130302

RESUMEN

Research into the metabolism of the non-essential amino acid (NEAA) proline in cancer has gained traction in recent years. The last step in the proline biosynthesis pathway is catalyzed by pyrroline-5-carboxylate reductase (PYCR) enzymes. There are three PYCR enzymes: mitochondrial PYCR1 and 2 and cytosolic PYCR3 encoded by separate genes. The expression of the PYCR1 gene is increased in numerous malignancies and correlates with poor prognosis. PYCR1 expression sustains cancer cells' proliferation and survival and several mechanisms have been implicated to explain its oncogenic role. It has been suggested that the biosynthesis of proline is key to sustain protein synthesis, support mitochondrial function and nucleotide biosynthesis. However, the links between proline metabolism and cancer remain ill-defined and are likely to be tissue specific. Here we use a combination of human dataset, human tissue and mouse models to show that the expression levels of the proline biosynthesis enzymes are significantly increased during colorectal tumorigenesis. Functionally, the expression of mitochondrial PYCRs is necessary for cancer cells' survival and proliferation. However, the phenotypic consequences of PYCRs depletion could not be rescued by external supplementation with either proline or nucleotides. Overall, our data suggest that, despite the mechanisms underlying the role of proline metabolism in colorectal tumorigenesis remain elusive, targeting the proline biosynthesis pathway is a suitable approach for the development of novel anti-cancer therapies.


Asunto(s)
Neoplasias Colorrectales
15.
Hypertension ; 79(1): 12-23, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34739765

RESUMEN

Nonadherence to antihypertensive medication is common, especially in those with apparent treatment-resistant hypertension (true treatment-resistant hypertension requires exclusion of nonadherence), and its routine detection is supported by clinical guidelines. Chemical adherence testing is a reliable and valid method to detect adherence, yet methods are unstandardized and are not ubiquitous. This article describes the principles of chemical adherence testing for hypertensive patients and provides a set of recommendations for centers wishing to develop the test. We recommend testing should be done in either of two instances: (1) in those who have resistant hypertension or (2) in those on 2 antihypertensives who have a less than 10 mm Hg drop in systolic blood pressure on addition of the second antihypertensive medication. Furthermore, we recommend that verbal consent is secured before undertaking the test, and the results should be discussed with the patient. Based on medications prescribed in United Kingdom, European Union, and United States, we list top 20 to 24 drugs that cover >95% of hypertension prescriptions which may be included in the testing panel. Information required to identify these medications on mass spectrometry platforms is likewise provided. We discuss issues related to ethics, sample collection, transport, stability, urine versus blood samples, qualitative versus quantitative testing, pharmacokinetics, instrumentation, validation, quality assurance, and gaps in knowledge. We consider how to best present, interpret, and discuss chemical adherence test results with the patient. In summary, this guidance should help clinicians and their laboratories in the development of chemical adherence testing of prescribed antihypertensive drugs.


Asunto(s)
Antihipertensivos/uso terapéutico , Hipertensión/tratamiento farmacológico , Cumplimiento de la Medicación , Humanos , Espectrometría de Masas , Guías de Práctica Clínica como Asunto
16.
Rapid Commun Mass Spectrom ; 36(6): e9245, 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-34939243

RESUMEN

RATIONALE: Acrylamide is classified as a probable human carcinogen that is metabolised to glycidamide, which can covalently bind to DNA. The aim of this study was to investigate the formation of N7-glycidamide guanine (N7-GA-Gua) adducts in human blood DNA following exposure to acrylamide present in carbohydrate-rich foods as part of the normal human diet. METHODS: Lymphocyte DNA was extracted from blood samples obtained from healthy human volunteers. Following thermal depurination of the DNA samples, N7-GA-Gua adducts were quantified using a validated liquid chromatography/tandem mass spectrometry (LC/MS/MS) method incorporating a stable isotope labelled internal standard. Estimated dietary acrylamide intake was recorded by completion of food frequency questionnaires for the 24 hours prior to volunteer blood donation. RESULTS: An LC/MS/MS method was validated with a limit of detection of 0.25 fmol and a lower limit of quantitation of 0.50 fmol on column. N7-GA-Gua adducts were detected in human blood DNA with the levels ranging between 0.3 to 6.3 adducts per 108 nucleotides. The acrylamide intake was calculated from the food frequency questionnaires ranging between 20.0 and 78.6 µg. CONCLUSIONS: Identification and quantification of N7-GA-Gua adducts in the blood DNA of healthy volunteers suggests that dietary acrylamide exposure may lead to the formation of DNA adducts. This important finding warrants further investigation to ascertain a correlation between environmental/dietary acrylamide exposure and levels of DNA adducts.


Asunto(s)
Acrilamida/metabolismo , Cromatografía Liquida/métodos , Aductos de ADN/química , ADN/química , Exposición Dietética/efectos adversos , Compuestos Epoxi/química , Guanina/química , Espectrometría de Masas en Tándem/métodos , Humanos , Linfocitos/química
17.
Nanoscale ; 13(48): 20401-20411, 2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34854867

RESUMEN

Cancer is a disease of cellular evolution where single base changes in the genetic code can have significant impact on the translation of proteins and their activity. Thus, in cancer research there is significant interest in methods that can determine mutations and identify the significant binding sites (epitopes) of antibodies to proteins in order to develop novel therapies. Nano molecularly imprinted polymers (nanoMIPs) provide an alternative to antibodies as reagents capable of specifically capturing target molecules depending on their structure. In this study, we used nanoMIPs to capture KRAS, a critical oncogene, to identify mutations which when present are indicative of oncological progress. Herein, coupling nanoMIPs (capture) and liquid chromatography-mass spectrometry (detection), LC-MS has allowed us to investigate mutational assignment and epitope discovery. Specifically, we have shown epitope discovery by generating nanoMIPs to a recombinant KRAS protein and identifying three regions of the protein which have been previously assigned as epitopes using much more time-consuming protocols. The mutation status of the released tryptic peptide was identified by LC-MS following capture of the conserved region of KRAS using nanoMIPS, which were tryptically digested, thus releasing the sequence of a non-conserved (mutated) region. This approach was tested in cell lines where we showed the effective genotyping of a KRAS cell line and in the plasma of cancer patients, thus demonstrating its ability to diagnose precisely the mutational status of a patient. This work provides a clear line-of-sight for the use of nanoMIPs to its translation from research into diagnostic and clinical utility.


Asunto(s)
Impresión Molecular , Nanopartículas , Humanos , Espectrometría de Masas , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética
18.
JACS Au ; 1(6): 750-765, 2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34254058

RESUMEN

Rising population density and global mobility are among the reasons why pathogens such as SARS-CoV-2, the virus that causes COVID-19, spread so rapidly across the globe. The policy response to such pandemics will always have to include accurate monitoring of the spread, as this provides one of the few alternatives to total lockdown. However, COVID-19 diagnosis is currently performed almost exclusively by reverse transcription polymerase chain reaction (RT-PCR). Although this is efficient, automatable, and acceptably cheap, reliance on one type of technology comes with serious caveats, as illustrated by recurring reagent and test shortages. We therefore developed an alternative diagnostic test that detects proteolytically digested SARS-CoV-2 proteins using mass spectrometry (MS). We established the Cov-MS consortium, consisting of 15 academic laboratories and several industrial partners to increase applicability, accessibility, sensitivity, and robustness of this kind of SARS-CoV-2 detection. This, in turn, gave rise to the Cov-MS Digital Incubator that allows other laboratories to join the effort, navigate, and share their optimizations and translate the assay into their clinic. As this test relies on viral proteins instead of RNA, it provides an orthogonal and complementary approach to RT-PCR using other reagents that are relatively inexpensive and widely available, as well as orthogonally skilled personnel and different instruments. Data are available via ProteomeXchange with identifier PXD022550.

19.
Am Heart J ; 234: 71-80, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33454370

RESUMEN

BACKGROUND: Trimethylamine N-oxide (TMAO), a gut-related metabolite, is associated with heart failure (HF) outcomes. However, TMAO is the final product of a complex metabolic pathway (ie, choline/carnitine) that has never been entirely investigated in HF. The present study investigates a panel of metabolites involved in the TMAO-choline/carnitine metabolic pathway for their associations with outcome in acute HF patients. METHODS: In total, 806 plasma samples from acute HF patients were analyzed for TMAO, trimethyllysine, L-carnitine, acetyl-L-carnitine, γ-butyrobetaine, crotonobetaine, trimethylamine, betaine aldehyde, choline, and betaine using a developed liquid chromatography-tandem mass spectrometry method. Associations with outcome of all-cause mortality (death) and a composite of all-cause mortality and/or rehospitalization caused by HF (death/HF) at 30 days and 1 year were investigated. RESULTS: TMAO, trimethyllysine, L-carnitine, acetyl-L-carnitine, and γ-butyrobetaine were associated with death and death/HF at 30 days (short term; hazard ratio 1.30-1.49, P≤ .021) and at 1 year (long term; hazard ratio 1.15-1.25, P≤ .026) when adjusted for cardiac risk factors. L-carnitine and acetyl-L-carnitine were superior for short-term outcomes whereas TMAO was the superior metabolite for association with long-term outcomes. Furthermore, acetyl-L-carnitine and L-carnitine were superior for in-hospital mortality and improved risk stratification when combined with current clinical risk scores (ie, Acute Decompensated HEart Failure National REgistry, Organized Program To Initiate Lifesaving Treatment In Hospitalized Patients With Heart Failure, and Get With The Guidelines-Heart Failure; odds ratio (OR) ≥ 1.52, P≤ .020). CONCLUSIONS: Carnitine-related metabolites show associations with adverse outcomes in acute HF, in particular L-carnitine and acetyl-L-carnitine for short-term outcomes, and TMAO for long-term outcomes. Further studies are warranted to investigate the role and implications of carnitine metabolites including intervention in the pathogenesis of HF.


Asunto(s)
Carnitina/metabolismo , Colina/metabolismo , Microbioma Gastrointestinal , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/mortalidad , Metilaminas/metabolismo , Acetilcarnitina/sangre , Acetilcarnitina/metabolismo , Enfermedad Aguda , Anciano , Anciano de 80 o más Años , Betaína/análogos & derivados , Betaína/sangre , Betaína/metabolismo , Carnitina/sangre , Colina/sangre , Femenino , Insuficiencia Cardíaca/etiología , Mortalidad Hospitalaria , Humanos , Masculino , Metilaminas/sangre , Péptido Natriurético Encefálico/sangre , Factores de Riesgo , Estadísticas no Paramétricas
20.
JPEN J Parenter Enteral Nutr ; 45(4): 738-750, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32716569

RESUMEN

BACKGROUND: Administration of intravenous ω-3 fatty acid (ω-3FA) in advanced pancreatic adenocarcinoma patients receiving gemcitabine chemotherapy shows disease stabilization and improved progression-free survival. Using high-definition plasma proteomics, the underlying biological mechanisms responsible for these clinical effects are investigated. METHODS AND RESULTS: A pilot study involving plasma that was collected at baseline from 13 patients with histologically confirmed, unresectable pancreatic adenocarcinoma (baseline group) after 1-month treatment with intravenous gemcitabine and ω-3FA (treatment group) and intravenous gemcitabine only (control group) and was prepared for proteomic analysis. A 2-arm study comparing baseline vs treatment and treatment vs control was performed. Proteins were isolated from plasma with extensive immunodepletion, then digested and labeled with isobaric tandem mass tag peptide tags. Samples were then combined, fractionated, and injected into a QExactive-Orbitrap Mass-Spectrometer and analyzed on Proteome Discoverer and Scaffold with ensuing bioinformatics analysis. Selective reaction monitoring analysis was performed for verification. In total, 3476 proteins were identified. Anti-inflammatory markers (C-reactive protein, haptoglobin, and serum amyloid-A1) were reduced in the treatment group. Enrichment analysis showed angiogenesis downregulation, complement immune systems upregulation, and epigenetic modifications on histones. Pathway analysis identified direct action via the Pi3K-AKT pathway. Serum amyloid-A1 significantly reduced (P < .001) as a potential biomarker of efficacy for ω-3FA. CONCLUSIONS: This pilot study demonstrates administration of ω-3FA has potential anti-inflammatory, antiangiogenic, and proapoptotic effects via direct interaction with cancer-signaling pathways in patients with advanced pancreatic adenocarcinoma. Further studies in a larger sample size is required to validate the clinical correlation found in this preliminary study.


Asunto(s)
Adenocarcinoma , Ácidos Grasos Omega-3 , Neoplasias Pancreáticas , Adenocarcinoma/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Humanos , Neoplasias Pancreáticas/tratamiento farmacológico , Proyectos Piloto , Proteómica , Gemcitabina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA