Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Materials (Basel) ; 14(10)2021 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-34067665

RESUMEN

Metallic ferrimagnets with rare earth-transition metal alloys can provide novel properties that cannot be obtained using conventional ferromagnets. Recently, the compensation point of ferrimagnets, where the net magnetization or net angular momentum vanishes, has been considered a key aspect for memory device applications. For such applications, the magnetic anisotropy energy and damping constant are crucial. In this study, we investigate the magnetic anisotropy and damping constant of a GdCo alloy, with a Gd concentration of 12-27%. By analyzing the equilibrium tilting of magnetization as a function of the applied magnetic field, we estimate the uniaxial anisotropy to be 1-3 × 104 J m-3. By analyzing the transient dynamics of magnetization as a function of time, we estimate the damping constant to be 0.08-0.22.

2.
Nanotechnology ; 30(24): 245701, 2019 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-30802888

RESUMEN

Among two-dimensional (2D) layered van der Waals materials, ferromagnetic 2D materials can be useful for compact low-power spintronic applications. One promising candidate material is Fe3GeTe2 (FGT), which has a strong perpendicular magnetic anisotropy and relatively high Curie temperature. In this study, we confirmed that an oxide layer (O-FGT) naturally forms on top of exfoliated FGT and that an antiferromagnetic coupling (AFC) exists between FGT and O-FGT layers. From a first-principles calculation, oxide formation at the interface of each layer induces an AFC between the layers. An AFC causes a tailed hysteresis loop, where two-magnetization reversal curves are included, and a negative remanence magnetization at a certain temperature range.

3.
Sci Rep ; 8(1): 11558, 2018 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30069013

RESUMEN

We experimentally investigated the transport properties near metal electrodes installed on a conducting channel in a LaAlO3/SrTiO3 interface. The local region around the Ti and Al electrodes has a higher electrical conductance than that of other regions, where the upper limits of the temperature and magnetic field can be well defined. Beyond these limits, the conductance abruptly decreases, as in the case of a superconductor. The samples with the Ti- or Al-electrode have an upper-limit temperature of approximately 4 K, which is 10 times higher than the conventional superconducting critical temperature of LaAlO3/SrTiO3 interfaces and delta-doped SrTiO3. This phenomenon is explained by the mechanism of electron transfer between the metal electrodes and electronic d-orbitals in the LaAlO3/SrTiO3 interface. The transferred electrons trigger a phase transition to a superconductor-like state. Our results contribute to the deep understanding of the superconductivity in the LaAlO3/SrTiO3 interface and will be helpful for the development of high-temperature interface superconductors.

4.
Nature ; 494(7435): 72-6, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23364687

RESUMEN

Logic devices based on magnetism show promise for increasing computational efficiency while decreasing consumed power. They offer zero quiescent power and yet combine novel functions such as programmable logic operation and non-volatile built-in memory. However, practical efforts to adapt a magnetic device to logic suffer from a low signal-to-noise ratio and other performance attributes that are not adequate for logic gates. Rather than exploiting magnetoresistive effects that result from spin-dependent transport of carriers, we have approached the development of a magnetic logic device in a different way: we use the phenomenon of large magnetoresistance found in non-magnetic semiconductors in high electric fields. Here we report a device showing a strong diode characteristic that is highly sensitive to both the sign and the magnitude of an external magnetic field, offering a reversible change between two different characteristic states by the application of a magnetic field. This feature results from magnetic control of carrier generation and recombination in an InSb p-n bilayer channel. Simple circuits combining such elementary devices are fabricated and tested, and Boolean logic functions including AND, OR, NAND and NOR are performed. They are programmed dynamically by external electric or magnetic signals, demonstrating magnetic-field-controlled semiconductor reconfigurable logic at room temperature. This magnetic technology permits a new kind of spintronic device, characterized as a current switch rather than a voltage switch, and provides a simple and compact platform for non-volatile reconfigurable logic devices.

5.
J Nanosci Nanotechnol ; 7(1): 344-9, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17455502

RESUMEN

Current induced magnetic reversal due to spin transfer torque is a promising candidate in advanced information storage technology. It has been intensively studied. This work reports the field-dependence of switching-currents for current induced magnetization switching in a uncoupled nano-sized cobalt-based spin valve of exchange biased type. The dependency is investigated in hysteretic regime at room temperature, in comparison with that of a trilayer simple spin valve. In the simple spin valve, the switching currents behave to the positive and the negative applied magnetic field symmetrically. In the exchange biased type, in contrast, the switching currents respond to the negative field in a quite unusual and different manner than to the positive field. A negative magnetic field then can shift the switching-currents into either negative or positive current range, dependently on whether a parallel or an antiparallel state of the spin valve was produced by that field. This different character of switching currents in the negative field range can be explained by the effect of the exchange bias pinning field on the spin-polarizer (the fixed Co layer) of the exchange biased spin valve. That unidirectional pinning filed could suppress the thermal magnetization fluctuation in the spin-polarizer, leading to a higher spin polarization of the current, and hence a lower switching current density than in the simple spin valve.


Asunto(s)
Equipos de Almacenamiento de Computador , Electroquímica/métodos , Almacenamiento y Recuperación de la Información , Magnetismo , Nanotecnología/métodos , Simulación por Computador , Campos Electromagnéticos , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA