Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(1)2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38202559

RESUMEN

This paper presents a thorough numerical investigation focused on optimizing the efficiency of quantum-well intermediate-band solar cells (QW-IBSCs) based on III-nitride materials. The optimization strategy encompasses manipulating confinement potential energy, controlling hydrostatic pressure, adjusting compositions, and varying thickness. The built-in electric fields in (In, Ga)N alloys and heavy-hole levels are considered to enhance the results' accuracy. The finite element method (FEM) and Python 3.8 are employed to numerically solve the Schrödinger equation within the effective mass theory framework. This study reveals that meticulous design can achieve a theoretical photovoltaic efficiency of quantum-well intermediate-band solar cells (QW-IBSCs) that surpasses the Shockley-Queisser limit. Moreover, reducing the thickness of the layers enhances the light-absorbing capacity and, therefore, contributes to efficiency improvement. Additionally, the shape of the confinement potential significantly influences the device's performance. This work is critical for society, as it represents a significant advancement in sustainable energy solutions, holding the promise of enhancing both the efficiency and accessibility of solar power generation. Consequently, this research stands at the forefront of innovation, offering a tangible and impactful contribution toward a greener and more sustainable energy future.

2.
Materials (Basel) ; 16(21)2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37959574

RESUMEN

This study investigates the degradation of the silicon NPN transistor's emitter-base junction, specifically the 2N2219A model, under both forward and reverse polarization. We examine the current-voltage characteristics under the influence of 1 MeV proton irradiation at various fluencies, which are 5.3×108,5.3×1010,5×1011,5×1012, and 5×1013 protons/cm², all conducted at 307 K. The experimental findings elucidate a pronounced dependency of diode parameters, including the reverse saturation current, series resistance, and the non-idealist factor, on the incident proton flow. This observation underscores that proton-induced degradation is primarily driven by displacement damage, while recorded degradation is predominantly attributed to the generation of defects and interfacial traps within the transistor resulting from exposure to high-energy radiation. Our findings indicate that the effects of irradiation align more closely with the compensation phenomenon in doping rather than its reinforcement.

3.
Nanomaterials (Basel) ; 12(16)2022 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-36014723

RESUMEN

ZnO nanostructures were electrochemically synthesized on Cu and on chemical vapor deposited (CVD)-graphene/Cu electrodes. The deposition was performed at different electrode potentials ranging from -0.8 to -1.2 V, employing a zinc nitrate bath, and using voltametric and chronoamperometric techniques. The effects of the electrode nature and of the working electrode potential on the structural, morphological, and optical properties of the ZnO structures were investigated. It was found that all the samples crystallize in hexagonal wurtzite structure with a preferential orientation along the c-axis. Scanning electron microscopy (SEM) images confirm that the presence of a graphene covered electrode led to the formation of ZnO nanowires with a smaller diameter compared with the deposition directly on copper surface. The photoluminescence (PL) measurements revealed that the ZnO nanowires grown on graphene/Cu exhibit stronger emission compared to the nanowires grown on Cu. The obtained results add another possibility of tailoring the properties of such nanostructured films according to the specific functionality required.

4.
Nanomaterials (Basel) ; 10(8)2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32764216

RESUMEN

In this work, the effects of graphene oxide (GO) concentrations (1.5 wt.%, 2.5 wt.%, and 5 wt.%) on the structural, morphological, optical, and luminescence properties of zinc oxide nanorods (ZnO NRs)/GO nanocomposites, synthesized by a facile hydrothermal process, were investigated. X-ray diffraction (XRD) patterns of NRs revealed the hexagonal wurtzite structure for all composites with an average coherence length of about 40-60 nm. A scanning electron microscopy (SEM) study confirmed the presence of transparent and wrinkled, dense GO nanosheets among flower-like ZnO nanorods, depending on the GO amounts used in preparation. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR), ultraviolet-visible (UV-Vis) absorption spectroscopy, and photoluminescence (PL) measurements revealed the impact of GO concentration on the optical and luminescence properties of ZnO NRs/GO nanocomposites. The energy band gap of the ZnO nanorods was independent of GO concentration. Photoluminescence spectra of nanocomposites showed a significant decrease in the intensities in the visible light range and red shifted suggesting a charge transfer process. The nanocomposites' chromaticity coordinates for CIE 1931 color space were estimated to be (0.33, 0.34), close to pure white ones. The obtained results highlight the possibility of using these nanocomposites to achieve good performance and suitability for optoelectronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA