Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
J Control Release ; 376: 766-776, 2024 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-39437964

RESUMEN

Microneedle technologies have emerged as a promising transdermal drug delivery platform for postoperative tumor therapy. Despite their potential, enhancing intracellular drug delivery to tumor cells and boosting the therapeutic efficiency of microneedles pose significant challenges. Herein, we develop a nanomedicine-loaded microneedle to enhance the induction of ferroptosis and immunogenic cell death for postoperative tumor therapy. This advancement is achieved by pre-formulating small molecule drugs with transition metal and protein templates into nanomedicine. Upon insertion into the tumors, the microneedle rapidly dissolves, facilitating the release and subsequent cellular uptake of the nanomedicine by tumor cells. Notably, the nanomedicine can release Mn ions and ferroptosis-inducer sulfasalazine (SAS) under acidic conditions. Furthermore, the released Mn ions can produce reactive oxygen species, which decrease the levels of glutathione (GSH) and glutathione peroxidase 4 (GPX4) with increased lipid peroxidation and enhanced induction of ferroptosis. Besides, the treatment stimulates immunogenic cell death through the cell surface exposure of calreticulin (CRT) and release of high-mobility group box 1 (HMGB1), which further stimulates dendric cell maturation, T cell infiltration, and macrophage polarization towards the M1 phenotype. Consequently, this strategy significantly inhibits postoperative tumor regrowth and extends overall survival. Our study indicates the potential of the combination of nanomedicine and microneedle to improve postoperative therapeutic efficiency.

2.
Bioact Mater ; 41: 611-626, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39280896

RESUMEN

The specific induction of hepatic differentiation presents a significant challenge in developing alternative liver cell sources and viable strategies for clinical therapy of acute liver failure (ALF). The past decade has witnessed the blossom of microRNAs in regenerative medicine. Herein, microRNA 122-functionalized tetrahedral framework nucleic acid (FNA-miR-122) has emerged as an unprecedented and potential platform for directing the hepatic differentiation of adipose-derived mesenchymal stem cells (ADMSCs), which offers a straightforward and cost-effective method for generating functional hepatocyte-like cells (FNA-miR-122-iHep). Additionally, we have successfully established a liver organoid synthesis strategy by optimizing the co-culture of FNA-miR-122-iHep with endothelial cells (HUVECs), resulting in functional Hep:HUE-liver spheroids. Transcriptome analysis not only uncovered the potential molecular mechanisms through which miR-122 influences hepatic differentiation in ADMSCs, but also clarified that Hep:HUE-liver spheroids could further facilitate hepatocyte maturation and improved tissue-specific functions, which may provide new hints to be used to develop a hepatic organoid platform. Notably, compared to transplanted ADMSCs and Hep-liver spheroid, respectively, both FNA-miR-122-iHep-based single cell therapy and Hep:HUE-liver spheroid-based therapy showed high efficacy in treating ALF in vivo. Collectively, this research establishes a robust system using microRNA to induce ADMSCs into functional hepatocyte-like cells and to generate hepatic organoids in vitro, promising a highly efficient therapeutic approach for ALF.

3.
ACS Appl Mater Interfaces ; 16(7): 8527-8537, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38329426

RESUMEN

Bleeding and bacterial infections are crucial factors affecting wound healing. The usage of herbal medicine-derived materials holds great potential for promoting wound healing. However, the uncertain intrinsic effective ingredients and unclear mechanism of action remain great concerns. Herein, inspired by the herbal medicine Ligusticum wallichii, we reported the synthesis of tetramethylpyrazine-derived carbon quantum dots (TMP-CQDs) for promoting wound healing. Of note, the use of TMP as the precursor instead of L. wallichii ensured the repeatability and homogeneity of the obtained products. Furthermore, TMP-CQDs exhibited high antibacterial activity. Mechanically, TMP-CQDs inhibited the DNA repair, biosynthesis, and quorum sensing of the bacteria and induced intracellular reactive oxygen species (ROS). Moreover, TMP-CQDs could accelerate blood coagulation through activating factor VIII and promoting platelet aggregation. Effective wound healing was achieved by using TMP-CQDs in the Staphylococcus aureus-infected mouse skin wound model. This study sheds light on the development of herbal medicine-inspired materials as effective therapeutic drugs.


Asunto(s)
Medicamentos Herbarios Chinos , Puntos Cuánticos , Ratones , Animales , Carbono , Puntos Cuánticos/uso terapéutico , Antibiosis , Coagulación Sanguínea , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
4.
ACS Nano ; 17(24): 25243-25256, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38063365

RESUMEN

Acute liver failure (ALF) is a critical life-threatening disease that occurs due to a rapid loss in hepatocyte functions. Hepatocyte transplantation holds great potential for ALF treatment, as it rapidly supports liver biofunctions and enhances liver regeneration. However, hepatocyte transplantation is still limited by renewable and ongoing cell sources. In addition, intravenously injected hepatocytes are primarily trapped in the lungs and have limited efficacy because of the rapid clearance in vivo. Here, we designed a Y-shaped DNA nanostructure to deliver microRNA-122 (Y-miR122), which could induce the hepatic differentiation and maturation of human mesenchymal stem cells. mRNA sequencing analysis revealed that the Y-miR122 promoted important hepatic biofunctions of the induced hepatocyte-like cells including fat and lipid metabolism, drug metabolism, and liver development. To further improve hepatocyte transplantation efficiency and therapeutic effects in ALF treatment, we fabricated protective microgels for the delivery of Y-miR122-induced hepatocyte-like cells based on droplet microfluidic technology. When cocultured with human umbilical vein endothelial cells in microgels, the hepatocyte-like cells exhibited an increase in hepatocyte-associated functions, including albumin secretion and cytochrome P450 activity. Notably, upon transplantation into the ALF mouse model, the multiple cell-laden microgels effectively induced the restoration of liver function and enhanced liver regeneration. Overall, this study presents an efficient approach from the generation of hepatocyte-like cells to hepatocyte transplantation in ALF therapy.


Asunto(s)
Fallo Hepático Agudo , Trasplante de Células Madre Mesenquimatosas , MicroARNs , Microgeles , Ratones , Animales , Humanos , MicroARNs/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Microfluídica , Fallo Hepático Agudo/terapia , Fallo Hepático Agudo/inducido químicamente , Hepatocitos/metabolismo , Hígado/metabolismo , Diferenciación Celular
5.
Biomaterials ; 302: 122349, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37844429

RESUMEN

Targeting the activated epidermal growth factor receptor (EGFR) via clustered regularly interspaced short palindromic repeat (CRISPR) technology is appealing to overcome the drug resistance of hepatocellular carcinoma (HCC) towards tyrosine kinase inhibitor (TKI) therapy. However, combining these two distinct drugs using traditional liposomes results in a suboptimal synergistic anti-HCC effect due to the limited CRISPR/Cas9 delivery efficiency caused by lysosomal entrapment after endocytosis. Herein, we developed a liver-targeting gene-hybridizing-TKI fusogenic liposome (LIGHTFUL) that can achieve high CRISPR/Cas9 expression to reverse the EGFR-mediated drug resistance for enhanced TKI-based HCC therapy efficiently. Coated with a galactose-modified membrane-fusogenic lipid layer, LIGHTFUL reached the targeting liver site to fuse with HCC tumor cells, directly and efficiently transporting interior CDK5- and PLK1-targeting CRISPR/Cas9 plasmids (pXG333-CPs) into the HCC cell cytoplasm and then the cell nucleus for efficient expression. Such membrane-fusion-mediated pXG333-CP delivery resulted in effective downregulation of both CDK5 and PLK1, sufficiently inactivating EGFR to improve the anti-HCC effects of the co-delivered TKI, lenvatinib. This membrane-fusion-participant codelivery strategy optimized the synergetic effect of CRISPR/Cas9 and TKI combinational therapy as indicated by the 0.35 combination index in vitro and the dramatic reduction of subcutaneous and orthotopic TKI-insensitive HCC tumor growth in mice. Therefore, the established LIGHTFUL provides a unique co-delivery platform to combine gene editing and TKI therapies for enhanced synergetic therapy.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animales , Humanos , Ratones , Carcinoma Hepatocelular/terapia , Línea Celular Tumoral , Resistencia a Antineoplásicos , Receptores ErbB/metabolismo , Neoplasias Hepáticas/terapia , Nanomedicina , Tirosina
6.
PLoS Pathog ; 19(8): e1011581, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37594999

RESUMEN

Kaposi's sarcoma-associated herpesvirus (KSHV) is an oncogenic virus consisting of both latent and lytic life cycles. Primary effusion lymphoma (PEL) is an aggressive B-cell lineage lymphoma, dominantly latently infected by KSHV. The latent infection of KSHV is persistent and poses an obstacle to killing tumor cells. Like the "shock and kill" strategy designed to eliminate latent HIV reservoir, methods that induce viral lytic reactivation in tumor latently infected by viruses represent a unique antineoplastic strategy, as it could potentially increase the specificity of cytotoxicity in cancer. Inspired by this conception, we proposed that the induction of KSHV lytic reactivation from latency could be a potential therapeutic stratagem for KSHV-associated cancers. Oxidative stress, the clinical hallmark of PEL, is one of the most prominent inducers for KSHV reactivation. Paradoxically, we found that hydrogen peroxide (H2O2) triggers robust cytotoxic effects on KSHV-negative rather than KSHV-positive B lymphoma cells in a dose-dependent manner. Mechanistically, we identified forkhead box protein O1 (FoxO1) and FoxO3 as irrevocable antioxidant defense genes and both of them are upregulated by KSHV latent infection, which is essential for the promoted ROS scavenging in KSHV-positive B lymphoma cells. Pharmacological inhibition or functional knockdown of either FoxO1 or FoxO3 is sufficient to ablate the antioxidant ability and therefore increases the intracellular ROS level that further reverses KSHV from latency to active lytic replication in PEL cells, resulting in tremendous cell death both in vitro and in vivo. Additionally, the elevated level of ROS by inhibiting FoxO proteins further sensitizes PEL cells to ROS-induced apoptosis. Our study therefore demonstrated that the lytic reactivation of KSHV by inhibiting FoxO proteins is a promising therapeutic approach for PEL, which could be further extended to other virus-associated diseases.


Asunto(s)
Síndrome de Inmunodeficiencia Adquirida , Infecciones por VIH , VIH-1 , Herpesviridae , Herpesvirus Humano 8 , Linfoma de Efusión Primaria , Humanos , Antioxidantes , Peróxido de Hidrógeno , Especies Reactivas de Oxígeno , Latencia del Virus
7.
Sci Adv ; 9(32): eadh2413, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37556535

RESUMEN

Equipping multiple functionalities on adoptive effector cells is essential to overcome the complex immunological barriers in solid tumors for superior antitumor efficacy. However, current cell engineering technologies cannot endow these functionalities to cells within a single step because of the different spatial distributions of targets in one cell. Here, we present a core-shell anti-phagocytosis-blocking repolarization-resistant membrane-fusogenic liposome (ARMFUL) to achieve one-step multiplexing cell engineering for multifunctional cell construction. Through fusing with the M1 macrophage membrane, ARMFUL inserts an anti-CD47 (aCD47)-modified lipid shell onto the surface and simultaneously delivers colony-stimulating factor 1 receptor inhibitor BLZ945-loaded core into the cytoplasm. The surface-presenting aCD47 boosts macrophage's phagocytosis against the tumor by blocking CD47. The cytoplasm-located BLZ945 prompts its polarization resistance to M2 phenotype in the immunosuppressive microenvironment via inactivating the intracellular M2 polarization signaling pathway. This ARMFUL provides a versatile cell engineering platform to customize multimodal cellular functions for enhanced adoptive cell therapy.


Asunto(s)
Liposomas , Neoplasias , Humanos , Liposomas/metabolismo , Inmunoterapia Adoptiva , Línea Celular Tumoral , Fagocitosis , Macrófagos/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral
8.
J Mater Chem B ; 11(28): 6595-6602, 2023 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-37365998

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) is one of the most common skin cancers with increasing incidence worldwide. However, it is still challenging to prevent the relapse of cSCC due to poor drug penetration across the stratum corneum. Herein, we report the design of a microneedle patch loaded with MnO2/Cu2O nanosheets and combretastatin A4 (MN-MnO2/Cu2O-CA4) for the enhanced therapy of cSCC. The prepared MN-MnO2/Cu2O-CA4 patch could effectively deliver adequate drugs locally into the tumor sites. Moreover, the glucose oxidase (GOx)-mimicking activity of MnO2/Cu2O could catalyze glucose to produce H2O2, which combined with the released Cu to induce a Fenton-like reaction to efficiently generate hydroxyl radicals for chemodynamic therapy. Meanwhile, the released CA4 could inhibit cancer cell migration and tumor growth by disrupting the tumor vasculature. Moreover, MnO2/Cu2O was endowed with the ability of photothermal conversion under the irradiation of near-infrared (NIR) laser, which could not only kill the cancer cells but also promote the efficiency of the Fenton-like reaction. Significantly, the photothermal effect did not compromise the GOx-like activity of MnO2/Cu2O, which guaranteed enough production of H2O2 for the sufficient generation of hydroxyl radicals. This work may open avenues for constructing MN-based multimodal treatment for the efficient therapy of skin cancers.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Cutáneas , Humanos , Carcinoma de Células Escamosas/tratamiento farmacológico , Peróxido de Hidrógeno , Terapia Fototérmica , Compuestos de Manganeso/farmacología , Neoplasias Cutáneas/tratamiento farmacológico , Óxidos/farmacología , Radical Hidroxilo
9.
Bioact Mater ; 28: 50-60, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37214257

RESUMEN

As the most abundant liver-specific microRNA, microRNA-122 (miR122) played a crucial role in the differentiation of stem cells into hepatocytes. However, highly efficient miR122 delivery still confronts challenges including poor cellular uptake and easy biodegradation. Herein, we for the first time demonstrated that the tetrahedral DNA (TDN) nanoplatform had great potential in inducing the differentiation of human mesenchymal stem cells (hMSCs) into functional hepatocyte-like cells (HLCs) by transferring the liver-specific miR122 to hMSCs efficiently without any extrinsic factors. As compared with miR122, miR122-functionalized TDN (TDN-miR122) could significantly up-regulate the protein expression levels of mature hepatocyte markers and hepatocyte-specific marker genes in hMSCs, indicating that TDN-miR122 could particularly activate the hepatocyte-specific properties of hMSCs for developing cell-based therapies in vitro. The transcriptomic analysis further indicated the potential mechanism that TDN-miR122 assisted hMSCs differentiated into functional HLCs. The TDN-miR122-hMSCs exhibited hepatic cell morphology phenotype, significantly up-regulated specific hepatocyte genes and hepatic biofunctions in comparison with the undifferentiated MSCs. Preclinical in vivo transplantation appeared that TDN-miR122-hMSCs in combination with or without TDN could efficiently rescue acute liver failure injury through hepatocyte function supplement, anti-apoptosis, cellular proliferation promotion, and anti-inflammatory. Collectively, our findings may provide a new and facile approach for hepatic differentiation of hMSCs for acute liver failure therapy. Further large animal model explorations are needed to study their potential in clinical translation in the future.

10.
Adv Sci (Weinh) ; 10(22): e2300899, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37156756

RESUMEN

As a currently common strategy to treat cancer, surgical resection may cause tumor recurrence and metastasis due to residual postoperative tumors. Herein, an implantable sandwich-structured dual-drug depot is developed to trigger a self-intensified starvation therapy and hypoxia-induced chemotherapy sequentially. The two outer layers are 3D-printed using a calcium-crosslinked mixture ink containing soy protein isolate, polyvinyl alcohol, sodium alginate, and combretastatin A4 phosphate (CA4P). The inner layer is one patch of poly (lactic-co-glycolic acid)-based electrospun fibers loaded with tirapazamine (TPZ). The preferentially released CA4P destroys the preexisting blood vessels and prevents neovascularization, which obstructs the external energy supply to cancer cells but aggravates hypoxic condition. The subsequently released TPZ is bioreduced to cytotoxic benzotriazinyl under hypoxia, further damaging DNA, generating reactive oxygen species, disrupting mitochondria, and downregulating hypoxia-inducible factor 1α, vascular endothelial growth factor, and matrix metalloproteinase 9. Together these processes induce apoptosis, block the intracellular energy supply, counteract the disadvantage of CA4P in favoring intratumor angiogenesis, and suppress tumor metastasis. The in vivo and in vitro results and the transcriptome analysis demonstrate that the postsurgical adjuvant treatment with the dual-drug-loaded sandwich-like implants efficiently inhibits tumor recurrence and metastasis, showing great potential for clinical translation.


Asunto(s)
Antineoplásicos , Recurrencia Local de Neoplasia , Humanos , Recurrencia Local de Neoplasia/prevención & control , Factor A de Crecimiento Endotelial Vascular , Línea Celular Tumoral , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Tirapazamina/farmacología , Hipoxia
11.
ACS Appl Mater Interfaces ; 15(4): 4911-4923, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36656977

RESUMEN

Biomaterial-based implants hold great potential for postoperative cancer treatment due to the enhanced drug dosage at the disease site and decreased systemic toxicity. However, the elaborate design of implants to avoid complicated chemical modification and burst release remains challenging. Herein, we report a three-dimensional (3D) printed hydrogel scaffold to enable sustained release of drugs for postoperative synergistic cancer therapy. The hydrogel scaffold is composed of Pluronic F127 and sodium alginate (SA) as well as doxorubicin (DOX) and copper ions (F127-SA/Cu-DOX hydrogel scaffold). Benefiting from the coordination of Cu(II) with both SA and DOX, burst release of DOX can be overcome, and prolonged release time can be achieved. The therapeutic efficiency can be adjusted by altering the amount of DOX and Cu(II) in the scaffolds. Moreover, apoptosis and ferroptosis of cancer cells can be induced through the combination of chemotherapy and chemodynamic therapy. In addition, DOX supplies excess hydrogen peroxide to enhance the efficiency of Cu-based chemodynamic therapy. When implanted in the resection site, hydrogel scaffolds effectively inhibit tumor growth. Overall, this study may offer a new strategy for fabricating local implants with synergistic therapeutic performance for preventing postoperative cancer recurrence.


Asunto(s)
Cobre , Hidrogeles , Hidrogeles/química , Línea Celular Tumoral , Doxorrubicina/uso terapéutico , Impresión Tridimensional
12.
J Nanobiotechnology ; 20(1): 266, 2022 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672826

RESUMEN

Surgical resection to achieve tumor-free margins represents a difficult clinical scenario for patients with hepatocellular carcinoma. While post-surgical treatments such as chemotherapy and radiotherapy can decrease the risk of cancer recurrence and metastasis, growing concerns about the complications and side effects have promoted the development of implantable systems for locoregional treatment. Herein, 3D printed hydrogel scaffolds (designed as Gel-SA-CuO) were developed by incorporating one agent with multifunctional performance into implantable devices to simplify the fabrication process for efficiently inhibiting postoperative tumor recurrence. CuO nanoparticles can be effectively controlled and sustained released during the biodegradation of hydrogel scaffolds. Notably, the released CuO nanoparticles not only function as the reservoir for releasing Cu2+ to produce intracellular reactive oxygen species (ROS) but also serve as photothermal agent to generate heat. Remarkably, the heat generated by photothermal conversion of CuO nanoparticles further promotes the efficiency of Fenton-like reaction. Additionally, ferroptosis can be induced through Cu2+-mediated GSH depletion via the inactivation of GPX4. By implanting hydrogel scaffolds in the resection site, efficient inhibition of tumor recurrence after primary resection can be achieved in vivo. Therefore, this study may pave the way for the development of advanced multifunctional implantable platform for eliminating postoperative relapsable cancers.


Asunto(s)
Ferroptosis , Neoplasias Hepáticas , Nanopartículas , Línea Celular Tumoral , Glutatión , Humanos , Hidrogeles , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/prevención & control , Impresión Tridimensional
13.
Anal Chim Acta ; 1192: 339336, 2022 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-35057952

RESUMEN

Early and accurate diagnosis of viruses is critical for control of the pandemic. CRISPR/Cas-based detection of nucleic acid is an emerging technology for molecular diagnostics, and has been applied for virus detection. Though these methods have excellent sensitivity and specificity, most of them were not able to measure the quantity of virus. We here developed a droplet digital reverse transcription loop-mediated isothermal amplification (RT-LAMP) enhanced Cas12b-based RNA detection platform (RECD), for quantitative detection of viral RNA. CRISPR/Cas12b, which is more thermally stable than other family members in CRISPR systems, is combined with digital RT-LAMP. Due to the innate characteristic of digital format detection and CRISPR/Cas system, droplet digital RECD (ddRECD) assay enables absolute quantification of viral RNA, with single-molecule sensitivity. We expect the ddRECD assay will be a powerful tool for molecular diagnostics.


Asunto(s)
Ácidos Nucleicos , ARN Viral , Sistemas CRISPR-Cas , ARN Viral/genética , Sensibilidad y Especificidad
14.
mBio ; 12(6): e0343121, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34933446

RESUMEN

Infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is causally associated with numerous cancers. The mechanism of KSHV-induced oncogenesis remains unclear. By performing a CRISPR-Cas9 screening in a model of KSHV-induced cellular transformation of primary cells, we identified epigenetic regulators that were essential for KSHV-induced cellular transformation. Examination of TCGA data sets of the top 9 genes, including glutamate-rich WD repeat containing 1 (GRWD1), a WD40 family protein upregulated by KSHV, that had positive effects on cell proliferation and survival of KSHV-transformed cells (KMM) but not the matched primary cells (MM), uncovered the predictive values of their expressions for patient survival in numerous types of cancer. We revealed global epigenetic remodeling including H3K4me3 epigenetic active mark in KMM cells compared to MM cells. Knockdown of GRWD1 inhibited cell proliferation, cellular transformation, and tumor formation and caused downregulation of global H3K4me3 mark in KMM cells. GRWD1 interacted with WD repeat domain 5 (WDR5), the core protein of H3K4 methyltransferase complex, and several H3K4me3 methyltransferases, including myeloid leukemia 2 (MLL2). Knockdown of WDR5 and MLL2 phenocopied GRWD1 knockdown, caused global reduction of H3K4me3 mark, and altered the expression of similar sets of genes. Transcriptome sequencing (RNA-seq) and chromatin immunoprecipitation sequencing (ChIP-seq) analyses further identified common and distinct cellular genes and pathways that were regulated by GRWD1, WDR5, and MLL2. These results indicate that KSHV hijacks the GRWD1-WDR5-MLL2 epigenetic complex to regulate H3K4me3 methylation of specific genes, which is essential for KSHV-induced cellular transformation. Our work has identified an epigenetic complex as a novel therapeutic target for KSHV-induced cancers. IMPORTANCE By performing a genome-wide CRISPR-Cas9 screening, we have identified cellular epigenetic regulators that are essential for KSHV-induced cellular transformation. Among them, GRWD1 regulates epigenetic active mark H3K4me3 by interacting with WDR5 and MLL2 and recruiting them to chromatin loci of specific genes in KSHV-transformed cells. Hence, KSHV hijacks the GRWD1-WDR5-MLL2 complex to remodel cellular epigenome and induce cellular transformation. Since the dysregulation of GRWD1 is associated with poor prognosis in several types of cancer, GRWD1 might also be a critical driver in other viral or nonviral cancers.


Asunto(s)
Proteínas Portadoras/metabolismo , Transformación Celular Viral , Proteínas de Unión al ADN/metabolismo , Epigénesis Genética , Herpesvirus Humano 8/fisiología , Histonas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de Neoplasias/metabolismo , Sarcoma de Kaposi/metabolismo , Animales , Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Herpesvirus Humano 8/genética , Histonas/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Unión Proteica , Sarcoma de Kaposi/enzimología , Sarcoma de Kaposi/genética , Sarcoma de Kaposi/virología
15.
Mater Horiz ; 8(6): 1769-1775, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846506

RESUMEN

Visual monitoring of telomerase activity in living cancer cells and in vivo is essential for clinical diagnosis and treatment. However, most detection methods were performed in vitro due to the difficulty of probes entering cells and the interferences from complex biological environments. Herein, we developed a novel probe based on Au nanoclusters (AuNCs) with a nucleic acid-driven aggregation-induced emission (AIE) property for the first time. The probe was applied for detection of telomerase with high sensitivity. Importantly, the probe could achieve telomerase imaging in living cells and in solid tumor tissue in vivo. The study provided a specific connection fashion of metal nanoclusters for AIE generation. It holds great potential for the development of AIE-active metal nanoclusters as a diagnostic tool for disease detection in vitro as well as in vivo.


Asunto(s)
Nanopartículas del Metal , Ácidos Nucleicos , Telomerasa , Oro , Telomerasa/genética
16.
Adv Sci (Weinh) ; 8(24): e2102051, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34665528

RESUMEN

Liver disease, particularly viral hepatitis and hepatocellular carcinoma (HCC), is a global healthcare burden and leads to more than 2 million deaths per year worldwide. Despite some success in diagnosis and vaccine development, there are still unmet needs to improve diagnostics and therapeutics for viral hepatitis and HCC. The emerging clustered regularly interspaced short palindromic repeat/associated proteins (CRISPR/Cas) technology may open up a unique avenue to tackle these two diseases at the genetic level in a precise manner. Especially, liver is a more accessible organ over others from the delivery point of view, and many advanced strategies applied for nanotheranostics can be adapted in CRISPR-mediated diagnostics or liver gene editing. In this review, the focus is on these two aspects of viral hepatitis and HCC applications. An overview on CRISPR editor development and current progress in clinical trials is first given, followed by highlighting the recent advances integrating the merits of gene editing and nanotheranostics. The promising systems that are used in other applications but may hold potentials in liver gene editing are also discussed. This review concludes with the perspectives on rationally designing the next-generation CRISPR approaches and improving the editing performance.


Asunto(s)
Sistemas CRISPR-Cas/genética , Carcinoma Hepatocelular/terapia , Edición Génica/métodos , Terapia Genética/métodos , Hepatitis Viral Humana/terapia , Neoplasias Hepáticas/terapia , Nanomedicina Teranóstica/métodos , Carcinoma Hepatocelular/genética , Hepatitis Viral Humana/genética , Humanos , Neoplasias Hepáticas/genética
17.
J Med Virol ; 93(12): 6671-6685, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34324210

RESUMEN

Infection by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes a wide spectrum of syndromes involving multiple organ systems and is primarily mediated by viral spike (S) glycoprotein through the receptor-binding domain (RBD) and numerous cellular proteins including ACE2, transmembrane serine protease 2 (TMPRSS2), kidney injury molecule-1 (Kim-1), and neuropilin-1 (NRP-1). In this study, we examined the entry tropism of SARS-CoV-2 and SARS-CoV using S protein-based pseudoviruses to infect 22 cell lines and 3 types of primary cells isolated from respiratory, urinary, digestive, reproductive, and immune systems. At least one cell line or type of primary cell from each organ system was infected by both pseudoviruses. Infection by pseudoviruses is effectively blocked by S1, RBD, and ACE2 recombinant proteins, and more weakly by Kim-1 and NRP-1 recombinant proteins. Furthermore, cells with robust SARS-CoV-2 pseudovirus infection had strong expression of either ACE2 or Kim-1 and NRP-1 proteins. ACE2 glycosylation appeared to be critical for the infections of both viruses as there was a positive correlation between infectivity of either SARS-CoV-2 or SARS-CoV pseudovirus with the level of glycosylated ACE2 (gly-ACE2). These results reveal that SARS-CoV-2 cell entry could be mediated by either an ACE2-dependent or -independent mechanism, thus providing a likely molecular basis for its broad tropism for a wide variety of cell types.


Asunto(s)
Enzima Convertidora de Angiotensina 2/metabolismo , Tracto Gastrointestinal/virología , Genitales/virología , Receptor Celular 1 del Virus de la Hepatitis A/metabolismo , Sistema Inmunológico/virología , Neuropilina-1/metabolismo , Sistema Respiratorio/virología , SARS-CoV-2/fisiología , Serina Endopeptidasas/metabolismo , Internalización del Virus , Western Blotting , COVID-19/metabolismo , COVID-19/virología , Línea Celular , Células Cultivadas , Técnica del Anticuerpo Fluorescente , Tracto Gastrointestinal/citología , Genitales/citología , Humanos , Sistema Inmunológico/citología , Sistema Respiratorio/citología
18.
J Med Virol ; 93(8): 5065-5075, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33942339

RESUMEN

Viral infection has been implicated in the pathogenesis of a plethora of human diseases. Although antiviral therapies effectively confront the viral spread and infection, how to completely eradicate the viral genome from infected cells remains a challenge. In this study, we demonstrated the reversible switching of primary cells between normal and malignant states by an oncogenic virus Kaposi's sarcoma-associated herpesvirus (KSHV) and CRISPR/Cas9-mediated targeting of a major viral latent protein. Primary cells can be transformed into malignant status by infection of KSHV, while elimination of the KSHV genome from latent KSHV-infected cells reverses KSHV-transformed primary cells back to a "normal state" by CRISPR/Cas-mediated knockout of viral major latent gene LANA. As a proof of concept, we demonstrated efficient elimination of KSHV episome in KSHV-associated primary effusion lymphoma cells resulting in the induction of apoptosis by liposome-encapsulated CRISPR/Cas9 ribonucleoprotein complexes (Lipo/Cas9-LANAsgRNA). Our work illustrates CRISPR/Cas as a promising technology for eliminating oncogenic viruses from persistently infected cells by taking advantage of the genetic differences between viral and cellular genomes. Compared to traditional antiviral therapy, our study offer an approach for antagonizing human oncogenic virus-related cancers by directly targeting as well as clearing viral genomes.


Asunto(s)
Antígenos Virales/genética , Sistemas CRISPR-Cas , Transformación Celular Neoplásica/genética , Herpesvirus Humano 8/genética , Proteínas Nucleares/genética , Virus Oncogénicos/genética , Animales , Antígenos Virales/metabolismo , Apoptosis , Proteína 9 Asociada a CRISPR/genética , Proteína 9 Asociada a CRISPR/metabolismo , Ciclo Celular , Proliferación Celular , Técnicas de Inactivación de Genes , Genoma Viral/genética , Herpesvirus Humano 8/patogenicidad , Humanos , Linfoma de Efusión Primaria/patología , Células Madre Mesenquimatosas , Proteínas Nucleares/metabolismo , Virus Oncogénicos/patogenicidad , ARN Guía de Kinetoplastida/genética , Ratas , Latencia del Virus/genética
19.
ACS Appl Mater Interfaces ; 13(16): 18488-18499, 2021 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-33856761

RESUMEN

The postoperative tumor recurrence and chemotherapy resistance in clinical osteosarcoma treatment have raised an imperative need to develop local implants for selectively killing residual tumor cells and simultaneously provide a scaffold for effectively filling the tumor resection-induced bone defects. Herein, a multifunctional platform is developed through successively coating TiN microparticles and doxorubicin (DOX) on the surface of tricalcium phosphate (TCP) scaffolds to achieve synergetic effects of photothermal therapy and chemotherapy for osteosarcoma. The content of TiN and DOX in the scaffolds can be flexibly adjusted by immersing the scaffolds into the solution containing different concentrations of TiN and DOX. The excellent therapeutic effect was achieved both in vitro and in vivo through the precise photothermal therapy and localized controlled-release chemotherapy. Moreover, the overall bulk scaffolds provide the mechanical support for bone tissue when implanting scaffolds into bone defects resulting from surgical removal of osteosarcoma. Importantly, using the poly(d,l-lactide) (PDLLA) as the medium, the scaffolds can be exploited as a universal platform for loading different kinds of therapeutic agents. This study may provide insights into designing multifunctional local implantation for eradicating tumors after surgical interventions with mitigated side effects.


Asunto(s)
Cerámica/química , Osteosarcoma/terapia , Impresión Tridimensional , Andamios del Tejido/química , Fosfatos de Calcio/química , Terapia Combinada , Doxorrubicina/química , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Osteosarcoma/tratamiento farmacológico , Fototerapia , Poliésteres/química , Propiedades de Superficie , Titanio/química
20.
J Infect Dis ; 223(11): 1842-1854, 2021 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-33837392

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) patients manifest with pulmonary symptoms reflected by diffuse alveolar damage (DAD), excessive inflammation, and thromboembolism. The mechanisms mediating these processes remain unclear. METHODS: We performed multicolor staining for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins and lineage markers to define viral tropism and lung pathobiology in 5 autopsy cases. RESULTS: Lung parenchyma showed severe DAD with thromboemboli. Viral infection was found in an extensive range of cells including pneumocyte type II, ciliated, goblet, club-like, and endothelial cells. More than 90% of infiltrating immune cells were positive for viral proteins including macrophages, monocytes, neutrophils, natural killer (NK) cells, B cells, and T cells. Most but not all infected cells were angiotensin-converting enzyme 2 (ACE2) positive. The numbers of infected and ACE2-positive cells are associated with extensive tissue damage. Infected tissues exhibited high levels of inflammatory cells including macrophages, monocytes, neutrophils, and NK cells, and low levels of B cells but abundant T cells consisting of mainly T helper cells, few cytotoxic T cells, and no regulatory T cells. Robust interleukin-6 expression was present in most cells, with or without infection. CONCLUSIONS: In fatal COVID-19 lungs, there are broad SARS-CoV-2 cell tropisms, extensive infiltrated innate immune cells, and activation and depletion of adaptive immune cells, contributing to severe tissue damage, thromboemboli, excess inflammation, and compromised immune responses.


Asunto(s)
COVID-19/patología , Pulmón/patología , SARS-CoV-2/fisiología , Tropismo Viral , Adulto , Anciano , COVID-19/inmunología , COVID-19/virología , Femenino , Humanos , Inmunidad Innata , Pulmón/citología , Pulmón/inmunología , Pulmón/virología , Masculino , Persona de Mediana Edad , Alveolos Pulmonares/inmunología , Alveolos Pulmonares/patología , Alveolos Pulmonares/virología , Tropismo Viral/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA