Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Omega ; 9(3): 3262-3275, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38284094

RESUMEN

The ability of the centrifugal Lab-on-a-Disc (LoaD) platform to closely mimic the "on bench" liquid handling steps (laboratory unit operations (LUOs)) such as metering, mixing, and aliquoting supports on-disc automation of bioassay without the need for extensive biological optimization. Thus, well-established bioassays, normally conducted manually using pipettes or using liquid handling robots, can be relatively easily automated in self-contained microfluidic chips suitable for use in point-of-care or point-of-use settings. The LoaD's ease of automation is largely dependent on valves that can control liquid movement on the rotating disc. The optimum valving strategy for a true low-cost and portable device is rotationally actuated valves, which are actuated by changes in the disc spin-speed. However, due to tolerances in disc manufacturing and variations in reagent properties, most of these valving technologies have inherent variation in their actuation spin-speed. Most valves are actuated through stepped increases in disc spin-speed until the motor reaches its maximum speed (rarely more than 6000 rpm). These manufacturing tolerances combined with this "analogue" mechanism of valve actuation limits the number of LUOs that can be placed on-disc. In this work, we present a novel valving mechanism called low-high-low serial dissolvable film (DF) valves. In these valves, a DF membrane is placed in a dead-end pneumatic chamber. Below an actuation spin-speed, the trapped air prevents liquid wetting and dissolving the membrane. Above this spin-speed, the liquid will enter and wet the DF and open the valve. However, as DFs take ∼40 s to dissolve, the membrane can be wetted, and the disc spin-speed reduced before the film opens. Thus, by placing valves in a series, we can govern on which "digital pulse" in spin-speeding a reagent is released; a reservoir with one serial valve will open on the first pulse, a reservoir with two serial valves on the second, and so on. This "digital" flow control mechanism allows the automation of complex assays with high reliability. In this work, we first describe the operation of the valves, outline the theoretical basis for their operation, and support this analysis with an experiment. Next, we demonstrate how these valves can be used to automate the solid-phase extraction of DNA on on-disc LAMP amplification for applications in plant pathogen detection. The disc was successfully used to extract and detect, from a sample lysed off-disc, DNA indicating the presence of thermally inactivated Clavibacter michiganensis ssp. michiganensis (Cmm), a bacterial pathogen on tomato leaf samples.

2.
Anal Chim Acta ; 1288: 342159, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38220291

RESUMEN

BACKGROUND: Biomedical diagnostic and lab automation solutions built on the Lab-on-a-Disc (LoaD) platform has great potential due to their independence from specialised micro-pumps and their ease of integration, through direct pipetting, with manual or automated workflows. However, a challenge for all microfluidic chips is their cost of manufacture when each microfluidic disc must be customized for a specific application. In this paper, we present centrifugal discs with programmable fluidic networks. RESULTS: Based on dissolvable film valves, we present two technologies. The first, based on recently introduced pulse-actuated dissolvable film valves, is a centrifugal disc which, depending on how it is loaded, is configured to perform either six sequential reagent releases through one reaction chamber or three sequential reagent releases through two reaction chambers. In the second approach, we use the previously introduced electronic Lab-on-a-Disc (eLoaD) wireless valve array, which can actuate up to 128 centrifugo-pneumatic dissolvable film valves in a pre-defined sequence. In this approach we present a disc which can deliver any one of 8 reagent washes to any one of four reaction chambers. We use identical discs to demonstrate the first four sequential washes through two reaction chambers and then two sequential washes through four reaction chambers. SIGNIFICANCE: These programmable fluidic networks have the potential to allow a single disc architecture to be applied to multiple different assay types and so can offer a lower-cost and more integrated alternative to the standard combination of micro-titre plate and liquid handling robot. Indeed, it may even be possible to conduct multiple different assays concurrently. This can have the effect of reducing manufacturing costs and streamlining supply-chains and so results in a more accessible diagnostic platform.

3.
Anal Chim Acta ; 1258: 341070, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37087288

RESUMEN

By virtue of its ruggedness, portability, rapid processing times, and ease-of-use, academic and commercial interest in centrifugal microfluidic systems has soared over the last decade. A key advantage of the LoaD platform is the ability to automate laboratory unit operations (LUOs) (mixing, metering, washing etc.) to support direct translation of 'on-bench' assays to 'on-chip'. Additionally, the LoaD requires just a low-cost spindle motor rather than specialized and expensive microfluidic pumps. Furthermore, when flow control (valves) is implemented through purely rotational changes in this same spindle motor (rather than using additional support instrumentation), the LoaD offers the potential to be a truly portable, low-cost and accessible platform. Current rotationally controlled valves are typically opened by sequentially increasing the disc spin-rate to a specific opening frequency. However, due lack of manufacturing fidelity these specific opening frequencies are better described as spin frequency 'bands'. With low-cost motors typically having a maximum spin-rate of 6000 rpm (100 Hz), using this 'analogue' approach places a limitation on the number of valves, which can be serially actuated thus limiting the number of LUOs that can be automated. In this work, a novel flow control scheme is presented where the sequence of valve actuation is determined by architecture of the disc while its timing is governed by freely programmable 'digital' pulses in its spin profile. This paradigm shift to 'digital' flow control enables automation of multi-step assays with high reliability, with full temporal control, and with the number of LUOs theoretically only limited by available space on the disc. We first describe the operational principle of these valves followed by a demonstration of the capability of these valves to automate complex assays by screening tomato leaf samples against plant pathogens. Reagents and lysed sample are loaded on-disc and then, in a fully autonomous fashion using only spindle-motor control, the complete assay is automated. Amplification and fluorescent acquisition take place on a custom spin-stand enabling the generation of real-time LAMP amplification curves using custom software. To prevent environmental contamination, the entire discs are sealed from atmosphere following loading with internal venting channels permitting easy movement of liquids about the disc. The disc was successfully used to detect the presence of thermally inactivated Clavibacter michiganensis. Michiganensis (CMM) bacterial pathogen on tomato leaf samples.


Asunto(s)
Técnicas Analíticas Microfluídicas , Ácidos Nucleicos , Técnicas de Amplificación de Ácido Nucleico , Reproducibilidad de los Resultados , Extracción en Fase Sólida , Enfermedades de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA