Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 3637, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38684665

RESUMEN

In contrast to adult mammals, adult zebrafish can fully regenerate injured cardiac tissue, and this regeneration process requires an adequate and tightly controlled immune response. However, which components of the immune response are required during regeneration is unclear. Here, we report positive roles for the antigen presentation-adaptive immunity axis during zebrafish cardiac regeneration. We find that following the initial innate immune response, activated endocardial cells (EdCs), as well as immune cells, start expressing antigen presentation genes. We also observe that T helper cells, a.k.a. Cd4+ T cells, lie in close physical proximity to these antigen-presenting EdCs. We targeted Major Histocompatibility Complex (MHC) class II antigen presentation by generating cd74a; cd74b mutants, which display a defective immune response. In these mutants, Cd4+ T cells and activated EdCs fail to efficiently populate the injured tissue and EdC proliferation is significantly decreased. cd74a; cd74b mutants exhibit additional defects in cardiac regeneration including reduced cardiomyocyte dedifferentiation and proliferation. Notably, Cd74 also becomes activated in neonatal mouse EdCs following cardiac injury. Altogether, these findings point to positive roles for antigen presentation during cardiac regeneration, potentially involving interactions between activated EdCs, classical antigen-presenting cells, and Cd4+ T cells.


Asunto(s)
Presentación de Antígeno , Lesiones Cardíacas , Antígenos de Histocompatibilidad Clase II , Regeneración , Pez Cebra , Animales , Regeneración/inmunología , Presentación de Antígeno/inmunología , Lesiones Cardíacas/inmunología , Antígenos de Histocompatibilidad Clase II/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Antígenos de Histocompatibilidad Clase II/genética , Ratones , Linfocitos T CD4-Positivos/inmunología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo , Antígenos de Diferenciación de Linfocitos B/metabolismo , Antígenos de Diferenciación de Linfocitos B/genética , Proliferación Celular , Inmunidad Innata , Corazón/fisiopatología , Corazón/fisiología , Mutación , Inmunidad Adaptativa , Animales Modificados Genéticamente
2.
Mol Syst Biol ; 20(4): 321-337, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38365956

RESUMEN

Adult stem cells are important for tissue turnover and regeneration. However, in most adult systems it remains elusive how stem cells assume different functional states and support spatially patterned tissue architecture. Here, we dissected the diversity of neural stem cells in the adult zebrafish brain, an organ that is characterized by pronounced zonation and high regenerative capacity. We combined single-cell transcriptomics of dissected brain regions with massively parallel lineage tracing and in vivo RNA metabolic labeling to analyze the regulation of neural stem cells in space and time. We detected a large diversity of neural stem cells, with some subtypes being restricted to a single brain region, while others were found globally across the brain. Global stem cell states are linked to neurogenic differentiation, with different states being involved in proliferative and non-proliferative differentiation. Our work reveals principles of adult stem cell organization and establishes a resource for the functional manipulation of neural stem cell subtypes.


Asunto(s)
Células Madre Adultas , Células-Madre Neurales , Animales , Pez Cebra/fisiología , Células-Madre Neurales/metabolismo , Neurogénesis , Encéfalo , Diferenciación Celular
3.
Cell Syst ; 15(1): 75-82.e5, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-38128536

RESUMEN

Stem cells differentiate into distinct fates by transitioning through a series of transcriptional states. Current computational approaches allow reconstruction of differentiation trajectories from single-cell transcriptomics data, but it remains unknown to what degree differentiation can be predicted across biological processes. Here, we use transfer learning to infer differentiation processes and quantify predictability in early embryonic development and adult hematopoiesis. Overall, we find that non-linear methods outperform linear approaches, and we achieved the best predictions with a custom variational autoencoder that explicitly models changes in transcriptional variance. We observed a high accuracy of predictions in embryonic development, but we found somewhat lower agreement with the real data in adult hematopoiesis. We demonstrate that this discrepancy can be explained by a higher degree of concordant transcriptional processes along embryonic differentiation compared with adult homeostasis. In summary, we establish a framework for quantifying and exploiting predictability of cellular differentiation trajectories.


Asunto(s)
Fenómenos Biológicos , Hematopoyesis , Diferenciación Celular , Perfilación de la Expresión Génica , Aprendizaje Automático
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA