RESUMEN
The Galapagos Marine Reserve is vital for cetaceans, serving as both a stopover and residency site. However, blue whales, occasionally sighted here, exhibit poorly understood migratory behavior within the Galapagos and the broader Eastern Tropical Pacific. This study, the first to satellite tag blue whales in the Galapagos (16 tagged between 2021 and 2023), explored their behavior in relation to environmental variables like chlorophyll-a concentration, sea surface temperature (SST), and productivity. Key findings show a strong correlation between foraging behavior, high chlorophyll-a levels, productivity, and lower SSTs, indicating a preference for food-rich areas. Additionally, there is a notable association with geomorphic features like ridges, which potentially enhance food abundance. Most tagged whales stayed near the Galapagos archipelago, with higher concentrations observed around Isabela Island, which is increasingly frequented by tourist vessels, posing heightened ship strike risks. Some whales ventured into Ecuador's exclusive economic zone, while one migrated southward to Peru. The strong 2023 El Niño-Southern Oscillation event led to SST and primary production changes, likely impacting whale resource availability. Our study provides crucial insights into blue whale habitat utilization, informing adaptive management strategies to mitigate ship strike risks and address altered migration routes due to climate-driven environmental shifts.
RESUMEN
Background: Discoveries of new species often depend on one or a few specimens, leading to delays as researchers wait for additional context, sometimes for decades. There is currently little professional incentive for a single expert to publish a stand-alone species description. Additionally, while many journals accept taxonomic descriptions, even specialist journals expect insights beyond the descriptive work itself. The combination of these factors exacerbates the issue that only a small fraction of marine species are known and new discoveries are described at a slow pace, while they face increasing threats from accelerating global change. To tackle this challenge, this first compilation of Ocean Species Discoveries (OSD) presents a new collaborative framework to accelerate the description and naming of marine invertebrate taxa that can be extended across all phyla. Through a mode of publication that can be speedy, taxonomy-focused and generate higher citation rates, OSD aims to create an attractive home for single species descriptions. This Senckenberg Ocean Species Alliance (SOSA) approach emphasises thorough, but compact species descriptions and diagnoses, with supporting illustrations and with molecular data when available. Even basic species descriptions carry key data for distributions and ecological interactions (e.g., host-parasite relationships) besides universally valid species names; these are essential for downstream uses, such as conservation assessments and communicating biodiversity to the broader public. New information: This paper presents thirteen marine invertebrate taxa, comprising one new genus, eleven new species and one re-description and reinstatement, covering wide taxonomic, geographic, bathymetric and ecological ranges. The taxa addressed herein span three phyla (Mollusca, Arthropoda, Echinodermata), five classes, eight orders and twelve families. Apart from the new genus, an updated generic diagnosis is provided for four other genera. The newly-described species of the phylum Mollusca are Placiphorellamethanophila Voncina, sp. nov. (Polyplacophora, Mopaliidae), Lepetodrilusmarianae Chen, Watanabe & Tsuda, sp. nov. (Gastropoda, Lepetodrilidae), Shinkailepasgigas Chen, Watanabe & Tsuda, sp. nov. (Gastropoda, Phenacolepadidae) and Lyonsiellaillaesa Machado & Sigwart, sp. nov. (Bivalvia, Lyonsiellidae). The new taxa of the phylum Arthropoda are all members of the subphylum Crustacea: Lepechinellanaces Lörz & Engel, sp. nov. (Amphipoda, Lepechinellidae), Cuniculomaeragrata Tandberg & Jazdzewska, gen. et sp. nov. (Amphipoda, Maeridae), Pseudionellapumulaensis Williams & Landschoff, sp. nov. (Isopoda, Bopyridae), Mastigoniscusminimus Wenz, Knauber & Riehl, sp. nov. (Isopoda, Haploniscidae), Macrostylispapandreas Jonannsen, Riehl & Brandt, sp. nov. (Isopoda, Macrostylidae), Austroniscusindobathyasellus Kaiser, Kniesz & Kihara, sp. nov. (Isopoda, Nannoniscidae) and Apseudopsisdaria Esquete & Tato, sp. nov. (Tanaidacea, Apseudidae). In the phylum Echinodermata, the reinstated species is Psychropotesbuglossa E. Perrier, 1886 (Holothuroidea, Psychropotidae).The study areas span the North and Central Atlantic Ocean, the Indian Ocean and the North, East and West Pacific Ocean and depths from 5.2 m to 7081 m. Specimens of eleven free-living and one parasite species were collected from habitats ranging from an estuary to deep-sea trenches. The species were illustrated with photographs, line drawings, micro-computed tomography, confocal laser scanning microscopy and scanning electron microscopy images. Molecular data are included for nine species and four species include a molecular diagnosis in addition to their morphological diagnosis.The five new geographic and bathymetric distribution records comprise Lepechinellanaces Lörz & Engel, sp. nov., Cuniculomaeragrata Tandberg & Jazdzewska, sp. nov., Pseudionellapumulaensis Williams & Landschoff, sp. nov., Austroniscusindobathyasellus Kaiser, Kniesz & Kihara, sp. nov. and Psychropotesbuglossa E. Perrier, 1886, with the novelty spanning from the species to the family level. The new parasite record is Pseudionellapumulaensis Williams & Landschoff, sp. nov., found in association with the hermit crab Pagurusfraserorum Landschoff & Komai, 2018.
RESUMEN
Background: Epigenetic regulation of gene expression and host defense is well established in microbial communities, with dozens of DNA modifications comprising the epigenomes of prokaryotes and bacteriophage. Phosphorothioation (PT) of DNA, in which a chemically-reactive sulfur atom replaces a non-bridging oxygen in the sugar-phosphate backbone, is catalyzed by dnd and ssp gene families widespread in bacteria and archaea. However, little is known about the role of PTs or other microbial epigenetic modifications in the human microbiome. Here we optimized and applied fecal DNA extraction, mass spectrometric, and metagenomics technologies to characterize the landscape and temporal dynamics of gut microbes possessing PT modifications. Results: Exploiting the nuclease-resistance of PTs, mass spectrometric analysis of limit digests of PT-containing DNA reveals PT dinucleotides as part of genomic consensus sequences, with 16 possible dinucleotide combinations. Analysis of mouse fecal DNA revealed a highly uniform spectrum of 11 PT dinucleotides in all littermates, with PTs estimated to occur in 5-10% of gut microbes. Though at similar levels, PT dinucleotides in fecal DNA from 11 healthy humans possessed signature combinations and levels of individual PTs. Comparison with a widely distributed microbial epigenetic mark, m6dA, suggested temporal dynamics consistent with expectations for gut microbial communities based on Taylor's Power Law. Application of PT-seq for site-specific metagenomic analysis of PT-containing bacteria in one fecal donor revealed the larger consensus sequences for the PT dinucleotides in Bacteroidota, Firmicutes, Actinobacteria, and Proteobacteria, which differed from unbiased metagenomics and suggested that the abundance of PT-containing bacteria did not simply mirror the spectrum of gut bacteria. PT-seq further revealed low abundance PT sites not detected as dinucleotides by mass spectrometry, attesting to the complementarity of the technologies. Conclusions: The results of our studies provide a benchmark for understanding the behavior of an abundant and chemically-reactive epigenetic mark in the human gut microbiome, with implications for inflammatory conditions of the gut.
RESUMEN
Methylation of cytosine 32 in the anticodon loop of tRNAs to 3-methylcytosine (m3C) is crucial for cellular translation fidelity. Misregulation of the RNA methyltransferases setting this modification can cause aggressive cancers and metabolic disturbances. Here, we report the cryo-electron microscopy structure of the human m3C tRNA methyltransferase METTL6 in complex with seryl-tRNA synthetase (SerRS) and their common substrate tRNASer. Through the complex structure, we identify the tRNA-binding domain of METTL6. We show that SerRS acts as the tRNASer substrate selection factor for METTL6. We demonstrate that SerRS augments the methylation activity of METTL6 and that direct contacts between METTL6 and SerRS are necessary for efficient tRNASer methylation. Finally, on the basis of the structure of METTL6 in complex with SerRS and tRNASer, we postulate a universal tRNA-binding mode for m3C RNA methyltransferases, including METTL2 and METTL8, suggesting that these mammalian paralogs use similar ways to engage their respective tRNA substrates and cofactors.
Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , ARN de Transferencia , Serina-ARNt Ligasa , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/química , Serina-ARNt Ligasa/metabolismo , Serina-ARNt Ligasa/química , Metilación , ARNt Metiltransferasas/química , ARNt Metiltransferasas/metabolismo , Metiltransferasas/química , Metiltransferasas/metabolismo , Unión Proteica , Sitios de UniónRESUMEN
In May 2022, twelve prickly sharks, Echinorhinus cookei Pietschmann 1928, were sighted at 151-350 m depth in the Cordillera de Coiba seamounts, Pacific Panama. This discovery expands our knowledge of the distribution and habitat use of this rare deep-sea species. It underscores the potential significance of the Cordillera de Coiba seamounts, an offshore marine protected area, as a critical habitat for E. cookei, a species threatened by commercial fishing. Although unverified reports exist on its presence in the tropical eastern Pacific, this publication represents the first documented record of live specimens of E. cookei in Panama.
Asunto(s)
Ecosistema , Tiburones , Animales , Panamá , Océano Pacífico , Masculino , Femenino , Distribución AnimalRESUMEN
ConspectusIn recent years, there has been a high interest in researching RNA modifications, as they are involved in many cellular processes and in human diseases. A substantial set of enzymes within the cell, called RNA writers, place RNA modifications selectively and site-specifically. Another set of enzymes, called readers, recognize these modifications which guide the fate of the modified RNA. Although RNA is a transient molecule and RNA modification could be removed by RNA degradation, a subclass of enzymes, called RNA erasers, remove RNA modifications selectively and site-specifically to alter the characteristics of the RNA. The detection of RNA modifications can be done by various methods including second and next generation sequencing but also mass spectrometry. An approach capable of both qualitative and quantitative RNA modification analysis is liquid chromatography coupled to mass spectrometry of enzymatic hydrolysates of RNA into nucleosides. However, for successful detection and quantification, various factors must be considered to avoid biased identification and inaccurate quantification. In this Account, we identify three classes of errors that may distort the analysis. These classes comprise (I) errors related to chemical instabilities, (II) errors revolving around enzymatic hydrolysis to nucleosides, and (III) errors arising from issues with chromatographic separation and/or subsequent mass spectrometric analysis.A prominent example for class 1 is Dimroth rearrangement of m1A to m6A, but class 1 also comprises hydrolytic reactions and reactions with buffer components. Here, we also present the conversion of m3C to m3U under mild alkaline conditions and propose a practical solution to overcome these instabilities. Class 2 errors-such as contaminations in hydrolysis reagents or nuclease specificities-have led to erroneous discoveries of nucleosides in the past and possess the potential for misquantification of nucleosides. Impurities in the samples may also lead to class 3 errors: For instance, issues with chromatographic separation may arise from residual organic solvents, and salt adducts may hamper mass spectrometric quantification. This Account aims to highlight various errors connected to mass spectrometry analysis of nucleosides and presents solutions for how to overcome or circumnavigate those issues. Therefore, the authors anticipate that many scientists, but especially those who plan on doing nucleoside mass spectrometry, will benefit from the collection of data presented in this Account as a raised awareness, toward the variety of potential pitfalls, may further enhance the quality of data.
Asunto(s)
Nucleósidos , ARN , Humanos , Nucleósidos/química , ARN/química , Espectrometría de Masas/métodos , Cromatografía Liquida/métodosRESUMEN
The chemical biology of native nucleic acid modifications has seen an intense upswing, first concerning DNA modifications in the field of epigenetics and then concerning RNA modifications in a field that was correspondingly rebaptized epitranscriptomics by analogy. The German Research Foundation (DFG) has funded several consortia with a scientific focus in these fields, strengthening the traditionally well-developed nucleic acid chemistry community and inciting it to team up with colleagues from the life sciences and data science to tackle interdisciplinary challenges. This Perspective focuses on the genesis, scientific outcome, and downstream impact of the DFG priority program SPP1784 and offers insight into how it fecundated further consortia in the field. Pertinent research was funded from mid-2015 to 2022, including an extension related to the coronavirus pandemic. Despite being a detriment to research activity in general, the pandemic has resulted in tremendously boosted interest in the field of RNA and RNA modifications as a consequence of their widespread and successful use in vaccination campaigns against SARS-CoV-2. Funded principal investigators published over 250 pertinent papers with a very substantial impact on the field. The program also helped to redirect numerous laboratories toward this dynamic field. Finally, SPP1784 spawned initiatives for several funded consortia that continue to drive the fields of nucleic acid modification.
Asunto(s)
Ácidos Nucleicos , ARN , Epigénesis Genética , BiologíaRESUMEN
Sangivamycin (S) is an adenosine (A) nucleoside analog with low nanomolar antiviral activity against SARS-CoV-2 in vitro. Previously, low nanomolar antiviral efficacy was revealed when tested against multiple viral variants in several cell types. SARS-CoV-2 RNA isolated from live virus infected cells and the virions released from these cells was analyzed by mass spectrometry (MS) for S incorporation. Dose-dependent incorporation occurred up to 1.8 S per 1,000 nucleotides (49 S per genome) throughout the viral genomes isolated from both infected cells and viral particles, but this incorporation did not change the viral mutation rate. In contrast, host mRNA, affinity purified from the same infected and treated cells, contained little or no S. Sangivamycin triphosphate (STP) was synthesized to evaluate its incorporation into RNA by recombinant SARS-CoV-2 RNA-dependent RNA polymerase (RdRp) under defined in vitro conditions. SARS-CoV-2 RdRp showed that S was not a chain terminator and S containing oligonucleotides templated as A. Though the antiviral mechanism remains to be determined, the data suggests that SARS-CoV-2 RdRp incorporates STP into SARS-CoV-2 RNA, which does not significantly impair viral RNA synthesis or the mutation rate.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Antivirales/químicaRESUMEN
As essential components of the protein synthesis machinery, tRNAs undergo a tightly controlled biogenesis process, which include the incorporation of numerous posttranscriptional modifications. Defects in these tRNA maturation steps may lead to the degradation of hypomodified tRNAs by the rapid tRNA decay (RTD) and nuclear surveillance pathways. We previously identified m1A58 as a late modification introduced after modifications Ψ55 and T54 in yeast elongator tRNAPhe. However, previous reports suggested that m1A58 is introduced early during the tRNA modification process, in particular on primary transcripts of initiator tRNAiMet, which prevents its degradation by RNA decay pathways. Here, aiming to reconcile this apparent inconsistency on the temporality of m1A58 incorporation, we examined its introduction into yeast elongator and initiator tRNAs. We used specifically modified tRNAs to report on the molecular aspects controlling the Ψ55 â T54 â m1A58 modification circuit in elongator tRNAs. We also show that m1A58 is efficiently introduced on unmodified tRNAiMet, and does not depend on prior modifications. Finally, we show that m1A58 has major effects on the structural properties of initiator tRNAiMet, so that the tRNA elbow structure is only properly assembled when this modification is present. This observation provides a structural explanation for the degradation of hypomodified tRNAiMet lacking m1A58 by the nuclear surveillance and RTD pathways.
Asunto(s)
ARN de Transferencia de Metionina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia/metabolismo , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARNRESUMEN
Hadal trenches are perceived as a unique deep-sea ecosystem with fundamentally different communities compared to the nearby abyss. So far, however, scarce information exists about how populations are genetically linked within a trench and about mechanisms for species divergence. The present study presents the morphological and molecular-genetic characterization and description of a new nannoniscid species within the genus Austroniscus Vanhöffen, 1914 obtained from abyssal and hadal depths of the Puerto Rico Trench, NW Atlantic. Samples were collected as part of the Vema-TRANSIT expedition onboard RV Sonne in January 2015. Because of the large depth differences between sampling locations (4,552-8,338 m), we expected to find different species within the genus inhabiting abyssal and hadal sites. Initial morphological examination using traditional light microscopy and Confocal Laser Scanning Microscopy was paired with subsequent molecular analysis based on mtDNA (COI and 16S). Contrary to our assumptions, combined morphological and molecular species delimitation analyses (sGMYC, mPTP, ABGD) revealed the presence of only one species spanning the abyssal and hadal seafloor of the Puerto Rico Trench. In addition, comparison with type material could show that this species belongs to a new species, Austroniscus brandtae n. sp., which is described herein. Incongruence between some species delimitation methods suggesting the presence of multiple species is interpreted as strong genetic population structuring within the trench, which is also supported by the analysis of the haplotype networks. The geographic and bathymetric distribution of Austroniscus species is discussed. The species described herein represents the first in the genus Austroniscus from the Atlantic Ocean and the deepest record of the genus to date, and hence significantly expanding previously known limits of its geographic and bathymetric range.
Asunto(s)
Isópodos , Animales , Isópodos/genética , ADN Mitocondrial/genética , Ecosistema , Puerto RicoRESUMEN
The sessile lifestyle of plants requires an immediate response to environmental stressors that affect photosynthesis, growth, and crop yield. Here, we showed that three abiotic perturbations-heat, cold, and high light-triggered considerable changes in the expression signatures of 42 epitranscriptomic factors (writers, erasers, and readers) with putative chloroplast-associated functions that formed clusters of commonly expressed genes in Arabidopsis. The expression changes under all conditions were reversible upon deacclimation, identifying epitranscriptomic players as modulators in acclimation processes. Chloroplast dysfunctions, particularly those induced by the oxidative stress-inducing norflurazon in a largely GENOME UNCOUPLED-independent manner, triggered retrograde signals to remodel chloroplast-associated epitranscriptomic expression patterns. N6-methyladenosine (m6A) is known as the most prevalent RNA modification and impacts numerous developmental and physiological functions in living organisms. During cold treatment, expression of components of the primary nuclear m6A methyltransferase complex was upregulated, accompanied by a significant increase in cellular m6A mRNA marks. In the cold, the presence of FIP37, a core component of the writer complex, played an important role in positive regulation of thylakoid structure, photosynthetic functions, and accumulation of photosystem I, the Cytb6f complex, cyclic electron transport proteins, and Curvature Thylakoid1 but not that of photosystem II components and the chloroplast ATP synthase. Downregulation of FIP37 affected abundance, polysomal loading, and translation of cytosolic transcripts related to photosynthesis in the cold, suggesting m6A-dependent translational regulation of chloroplast functions. In summary, we identified multifaceted roles of the cellular m6A RNA methylome in coping with cold; these were predominantly associated with chloroplasts and served to stabilize photosynthesis.
Asunto(s)
Arabidopsis , ARN , ARN/metabolismo , Epigenoma , Luz , Fotosíntesis/genética , Cloroplastos/genética , Cloroplastos/metabolismo , Arabidopsis/metabolismoRESUMEN
Paleodictyon is one of the most iconic and widespread of trace fossils in the geological record. However, modern examples are less well known and restricted to deep-sea settings at relatively low latitudes. Here, we report the distribution of Paleodictyon at six abyssal sites near the Aleutian Trench. This study reveals for the first time the presence of Paleodictyon at Subarctic latitudes (51°-53°N) and at depths over 4500 m, although the traces were not observed at stations deeper than 5000 m suggesting that there is some bathymetric constraint for the trace maker. Two small Paleodictyon morphotypes were recognized (average mesh size of 1.81 cm), one having a central hexagonal pattern, the other being characterized by a non-hexagonal pattern. Within the study area, Paleodictyon shows no apparent correlation with local environmental parameters. Finally, based on a worldwide morphological comparison, we conclude that the new Paleodictyon specimens represent distinct ichnospecies that are associated with the relatively eutrophic conditions in this region. Their smaller size may reflect this more eutrophic setting in which sufficient food can be obtained from a smaller area in order to satisfy the energetic requirements of the tracemakers. If so, then Paleodictyon size may provide some assistance when interpreting paleoenvironmental conditions.
Asunto(s)
FósilesRESUMEN
RNA is dynamically modified and has the potential to respond to environmental changes and tune translation. The objective of this work is to uncover the temporal limitation of our recently developed cell culture NAIL-MS (nucleic acid isotope labelling coupled mass spectrometry) technology and overcome it. Actinomycin D (AcmD), an inhibitor of transcription, was used in the NAIL-MS context to reveal the origin of hybrid nucleoside signals composed of unlabelled nucleosides and labelled methylation marks. We find that the formation of these hybrid species depends exclusively on transcription for Poly-A RNA and rRNA but is partly transcription-independent for tRNA. This finding suggests that tRNA modifications adapt and are dynamically regulated by cells to overcome e.g. stress. Future studies on the tRNA modification mediated stress response are now accessible and the temporal resolution of NAIL-MS is improved by the use of AcmD.
RESUMEN
The heptad repeats of the C-terminal domain (CTD) of RNA polymerase II (Pol II) are extensively modified throughout the transcription cycle. The CTD coordinates RNA synthesis and processing by recruiting transcription regulators as well as RNA capping, splicing and 3'end processing factors. The SPOC domain of PHF3 was recently identified as a CTD reader domain specifically binding to phosphorylated serine-2 residues in adjacent CTD repeats. Here, we establish the SPOC domains of the human proteins DIDO, SHARP (also known as SPEN) and RBM15 as phosphoserine binding modules that can act as CTD readers but also recognize other phosphorylated binding partners. We report the crystal structure of SHARP SPOC in complex with CTD and identify the molecular determinants for its specific binding to phosphorylated serine-5. PHF3 and DIDO SPOC domains preferentially interact with the Pol II elongation complex, while RBM15 and SHARP SPOC domains engage with writers and readers of m6A, the most abundant RNA modification. RBM15 positively regulates m6A levels and mRNA stability in a SPOC-dependent manner, while SHARP SPOC is essential for its localization to inactive X-chromosomes. Our findings suggest that the SPOC domain is a major interface between the transcription machinery and regulators of transcription and co-transcriptional processes.
Asunto(s)
Proteínas de Unión al ADN , Fosfoserina , Dominios Proteicos , Proteínas de Unión al ARN , Transcripción Genética , Humanos , Fosforilación , Fosfoserina/química , Fosfoserina/metabolismo , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , Empalme del ARN , Transcripción Genética/fisiología , Dominios Proteicos/fisiología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/fisiología , Proteínas de Unión al ARN/químicaRESUMEN
Azacytidine (AzaC) and decitabine (AzadC) are cytosine analogs that covalently trap DNA methyltransferases, which place the important epigenetic mark 5-methyl-2'-deoxycytidine by methylating 2'-deoxycytidine (dC) at the C5 position. AzaC and AzadC are used in the clinic as antimetabolites to treat myelodysplastic syndrome and acute myeloid leukemia and are explored against other types of cancer. Although their principal mechanism of action is known, the downstream effects of AzaC and AzadC treatment are not well understood and the cellular prerequisites that determine sensitivity toward AzaC and AzadC remain elusive. Here, we investigated the effects and phenotype of AzaC and AzadC exposure on the acute myeloid leukemia cell line MOLM-13. We found that while AzaC and AzadC share many effects on the cellular level, including decreased global DNA methylation, increased formation of DNA double-strand breaks, transcriptional downregulation of important oncogenes and similar changes on the proteome level, AzaC failed in contrast to AzadC to induce apoptosis efficiently in MOLM-13. The only cellular marker that correlated with this clear phenotypical outcome was the level of hydroxy-methyl-dC, an additional epigenetic mark that is placed by TET enzymes and repressed in cancer cells. Whereas AzadC increased hmdC substantially in MOLM-13, AzaC treatment did not result in any increase at all. This suggests that hmdC levels in cancer cells should be monitored as a response toward AzaC and AzadC and considered as a biomarker to judge whether AzaC or AzadC treatment leads to cell death in leukemic cells.
Asunto(s)
Azacitidina , Leucemia Mieloide Aguda , Azacitidina/farmacología , Línea Celular , ADN , Metilación de ADN , Decitabina/farmacología , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológicoRESUMEN
mRNA methylation is an important regulator of many physiological processes in eukaryotes but has not been studied in depth in prokaryotes. Working with bacterial mRNA is challenging because it lacks a poly(A)-tail. However, methods for detecting RNA modifications, both sequencing and mass spectrometry, rely on efficient preparation of mRNA. Here, we compared size-dependent separation by electrophoresis and rRNA depletion for enrichment of Escherichiaâ coli mRNA. The purification success was monitored by qRT-PCR and RNA sequencing. Neither method allowed complete removal of rRNA. Nevertheless, we were able to quantitatively analyze several modified nucleosides in the different RNA types. We found evidence for stress dependent RNA modification reprofiling in rRNA, but also several modified nucleosides in the mRNA enriched fractions showed significant changes.
Asunto(s)
Escherichia coli , ARN , Escherichia coli/genética , Nucleósidos/química , ARN/química , ARN Mensajero/genética , ARN RibosómicoRESUMEN
T cell antigen-receptor (TCR) signaling controls the development, activation and survival of T cells by involving several layers and numerous mechanisms of gene regulation. N6-methyladenosine (m6A) is the most prevalent messenger RNA modification affecting splicing, translation and stability of transcripts. In the present study, we describe the Wtap protein as essential for m6A methyltransferase complex function and reveal its crucial role in TCR signaling in mouse T cells. Wtap and m6A methyltransferase functions were required for the differentiation of thymocytes, control of activation-induced death of peripheral T cells and prevention of colitis by enabling gut RORγt+ regulatory T cell function. Transcriptome and epitranscriptomic analyses reveal that m6A modification destabilizes Orai1 and Ripk1 mRNAs. Lack of post-transcriptional repression of the encoded proteins correlated with increased store-operated calcium entry activity and diminished survival of T cells with conditional genetic inactivation of Wtap. These findings uncover how m6A modification impacts on TCR signal transduction and determines activation and survival of T cells.
Asunto(s)
Proteínas de Ciclo Celular , Metiltransferasas , Adenosina/análogos & derivados , Animales , Proteínas de Ciclo Celular/metabolismo , Metilación , Metiltransferasas/genética , Ratones , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de SeñalRESUMEN
The Ægir Ridge System (ARS) is an ancient extinct spreading axis in the Nordic seas extending from the upper slope east of Iceland (â¼550 m depth), as part of its Exclusive Economic Zone (EEZ), to a depth of â¼3,800 m in the Norwegian basin. Geomorphologically a rift valley, the ARS has a canyon-like structure that may promote increased diversity and faunal density. The main objective of this study was to characterize benthic habitats and related macro- and megabenthic communities along the ARS, and the influence of water mass variables and depth on them. During the IceAGE3 expedition (Icelandic marine Animals: Genetics and Ecology) on RV Sonne in June 2020, benthic communities of the ARS were surveyed by means of a remotely-operated vehicle (ROV) and epibenthic sledge (EBS). For this purpose, two working areas were selected, including abyssal stations in the northeast and bathyal stations in the southwest of the ARS. Video and still images of the seabed were usedtoqualitatively describebenthic habitats based on the presence of habitat-forming taxa and the physical environment. Patterns of diversity and community composition of the soft-sediment macrofauna, retrieved from the EBS, were analyzed in a semiquantitative manner. These biological data were complemented by producing high-resolution bathymetric maps using the vessel's multi-beam echosounder system. As suspected, we were able to identify differences in species composition and number of macro- and megafaunal communities associated with a depth gradient. A biological canyon effect became evident in dense aggregates of megafaunal filter feeders and elevated macrofaunal densities. Analysis of videos and still images from the ROV transects also led to the discovery of a number ofVulnerable Marine Ecosystems (VMEs) dominated by sponges and soft corals characteristic of the Arctic region. Directions for future research encompass a more detailed, quantitative study of the megafauna and more coherent sampling over the entire depth range in order to fully capture the diversity of the habitats and biota of the region. The presence of sensitive biogenic habitats, alongside seemingly high biodiversity and naturalness are supportive of ongoing considerations of designating part of the ARS as an "Ecologically and Biologically Significant Area" (EBSA).