Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
eNeuro ; 4(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28275718

RESUMEN

Synaptically released zinc inhibits baseline excitatory neurotransmission; however, the role of this neuromodulator on short-term plasticity during different levels of synaptic activity remains largely unknown. This lack of knowledge prevents our understanding of information transfer across zinc-releasing synapses, including 50% of excitatory synapses in cortical areas. We used in vitro electrophysiology in mouse brain slices and discovered that the effects of zinc on excitatory postsynaptic current (EPSC) amplitudes are context-dependent. At lower frequencies of activity, synaptically released zinc reduces EPSC amplitudes. In contrast, at higher stimulation frequencies and vesicular release probability (Pr), zinc inhibits EPSC amplitudes during the first few stimuli but leads to enhanced steady-state EPSC amplitudes during subsequent stimuli. This paradoxical enhancement is due to zinc-dependent potentiation of synaptic facilitation via the recruitment of endocannabinoid signaling. Together, these findings demonstrate that synaptically released zinc is a modulator of excitatory short-term plasticity, which shapes information transfer among excitatory synapses.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Sinapsis/metabolismo , Zinc/metabolismo , Animales , Vías Auditivas/efectos de los fármacos , Vías Auditivas/metabolismo , Tronco Encefálico/efectos de los fármacos , Tronco Encefálico/metabolismo , Endocannabinoides/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Femenino , Ratones Endogámicos ICR , Inhibición Neural/efectos de los fármacos , Inhibición Neural/fisiología , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/fisiología , Neurotransmisores/farmacología , Sinapsis/efectos de los fármacos , Vesículas Sinápticas/efectos de los fármacos , Vesículas Sinápticas/metabolismo , Técnicas de Cultivo de Tejidos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
2.
J Neurosci ; 36(32): 8487-99, 2016 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-27511019

RESUMEN

UNLABELLED: The neuromodulator acetylcholine (ACh) is crucial for several cognitive functions, such as perception, attention, and learning and memory. Whereas, in most cases, the cellular circuits or the specific neurons via which ACh exerts its cognitive effects remain unknown, it is known that auditory cortex (AC) neurons projecting from layer 5B (L5B) to the inferior colliculus, corticocollicular neurons, are required for cholinergic-mediated relearning of sound localization after occlusion of one ear. Therefore, elucidation of the effects of ACh on the excitability of corticocollicular neurons will bridge the cell-specific and cognitive properties of ACh. Because AC L5B contains another class of neurons that project to the contralateral cortex, corticocallosal neurons, to identify the cell-specific mechanisms that enable corticocollicular neurons to participate in sound localization relearning, we investigated the effects of ACh release on both L5B corticocallosal and corticocollicular neurons. Using in vitro electrophysiology and optogenetics in mouse brain slices, we found that ACh generated nicotinic ACh receptor (nAChR)-mediated depolarizing potentials and muscarinic ACh receptor (mAChR)-mediated hyperpolarizing potentials in AC L5B corticocallosal neurons. In corticocollicular neurons, ACh release also generated nAChR-mediated depolarizing potentials. However, in contrast to the mAChR-mediated hyperpolarizing potentials in corticocallosal neurons, ACh generated prolonged mAChR-mediated depolarizing potentials in corticocollicular neurons. These prolonged depolarizing potentials generated persistent firing in corticocollicular neurons, whereas corticocallosal neurons lacking mAChR-mediated depolarizing potentials did not show persistent firing. We propose that ACh-mediated persistent firing in corticocollicular neurons may represent a critical mechanism required for learning-induced plasticity in AC. SIGNIFICANCE STATEMENT: Acetylcholine (ACh) is crucial for cognitive functions. Whereas in most cases the cellular circuits or the specific neurons via which ACh exerts its cognitive effects remain unknown, it is known that auditory cortex (AC) corticocollicular neurons projecting from layer 5B to the inferior colliculus are required for cholinergic-mediated relearning of sound localization after occlusion of one ear. Therefore, elucidation of the effects of ACh on the excitability of corticocollicular neurons will bridge the cell-specific and cognitive properties of ACh. Our results suggest that cell-specific ACh-mediated persistent firing in corticocollicular neurons may represent a critical mechanism required for learning-induced plasticity in AC. Moreover, our results provide synaptic mechanisms via which ACh may mediate its effects on AC receptive fields.


Asunto(s)
Acetilcolina/farmacología , Corteza Auditiva/citología , Neuronas/efectos de los fármacos , Acetilcolina/metabolismo , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/genética , Animales , Channelrhodopsins , Colina O-Acetiltransferasa/genética , Colina O-Acetiltransferasa/metabolismo , Colinérgicos/farmacología , Combinación de Medicamentos , Femenino , Técnicas In Vitro , Colículos Inferiores/citología , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Neuronas/clasificación , Neuronas/fisiología , Optogenética , Técnicas de Placa-Clamp , Estimulación Física
3.
Proc Natl Acad Sci U S A ; 112(51): 15749-54, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26647187

RESUMEN

The vast amount of fast excitatory neurotransmission in the mammalian central nervous system is mediated by AMPA-subtype glutamate receptors (AMPARs). As a result, AMPAR-mediated synaptic transmission is implicated in nearly all aspects of brain development, function, and plasticity. Despite the central role of AMPARs in neurobiology, the fine-tuning of synaptic AMPA responses by endogenous modulators remains poorly understood. Here we provide evidence that endogenous zinc, released by single presynaptic action potentials, inhibits synaptic AMPA currents in the dorsal cochlear nucleus (DCN) and hippocampus. Exposure to loud sound reduces presynaptic zinc levels in the DCN and abolishes zinc inhibition, implicating zinc in experience-dependent AMPAR synaptic plasticity. Our results establish zinc as an activity-dependent, endogenous modulator of AMPARs that tunes fast excitatory neurotransmission and plasticity in glutamatergic synapses.


Asunto(s)
Receptores AMPA/antagonistas & inhibidores , Transmisión Sináptica , Zinc/fisiología , Animales , Núcleo Coclear/fisiología , Potenciales Postsinápticos Excitadores , Femenino , Hipocampo/fisiología , Masculino , Ratones , Ratones Endogámicos ICR , Plasticidad Neuronal , Receptores AMPA/fisiología
4.
Elife ; 42015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26312501

RESUMEN

Vulnerability to noise-induced tinnitus is associated with increased spontaneous firing rate in dorsal cochlear nucleus principal neurons, fusiform cells. This hyperactivity is caused, at least in part, by decreased Kv7.2/3 (KCNQ2/3) potassium currents. However, the biophysical mechanisms underlying resilience to tinnitus, which is observed in noise-exposed mice that do not develop tinnitus (non-tinnitus mice), remain unknown. Our results show that noise exposure induces, on average, a reduction in KCNQ2/3 channel activity in fusiform cells in noise-exposed mice by 4 days after exposure. Tinnitus is developed in mice that do not compensate for this reduction within the next 3 days. Resilience to tinnitus is developed in mice that show a re-emergence of KCNQ2/3 channel activity and a reduction in HCN channel activity. Our results highlight KCNQ2/3 and HCN channels as potential targets for designing novel therapeutics that may promote resilience to tinnitus.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Canal de Potasio KCNQ2/metabolismo , Canal de Potasio KCNQ3/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Ruido , Acúfeno/fisiopatología , Animales , Ratones
5.
J Neurosci ; 35(23): 8829-42, 2015 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-26063916

RESUMEN

Voltage-gated Kv7 (KCNQ) channels are voltage-dependent potassium channels that are activated at resting membrane potentials and therefore provide a powerful brake on neuronal excitability. Genetic or experience-dependent reduction of KCNQ2/3 channel activity is linked with disorders that are characterized by neuronal hyperexcitability, such as epilepsy and tinnitus. Retigabine, a small molecule that activates KCNQ2-5 channels by shifting their voltage-dependent opening to more negative voltages, is an US Food and Drug Administration (FDA) approved anti-epileptic drug. However, recently identified side effects have limited its clinical use. As a result, the development of improved KCNQ2/3 channel activators is crucial for the treatment of hyperexcitability-related disorders. By incorporating a fluorine substituent in the 3-position of the tri-aminophenyl ring of retigabine, we synthesized a small-molecule activator (SF0034) with novel properties. Heterologous expression of KCNQ2/3 channels in HEK293T cells showed that SF0034 was five times more potent than retigabine at shifting the voltage dependence of KCNQ2/3 channels to more negative voltages. Moreover, unlike retigabine, SF0034 did not shift the voltage dependence of either KCNQ4 or KCNQ5 homomeric channels. Conditional deletion of Kcnq2 from cerebral cortical pyramidal neurons showed that SF0034 requires the expression of KCNQ2/3 channels for reducing the excitability of CA1 hippocampal neurons. Behavioral studies demonstrated that SF0034 was a more potent and less toxic anticonvulsant than retigabine in rodents. Furthermore, SF0034 prevented the development of tinnitus in mice. We propose that SF0034 provides, not only a powerful tool for investigating ion channel properties, but, most importantly, it provides a clinical candidate for treating epilepsy and preventing tinnitus.


Asunto(s)
Anticonvulsivantes/uso terapéutico , Carbamatos/uso terapéutico , Epilepsia/tratamiento farmacológico , Canal de Potasio KCNQ2/agonistas , Canal de Potasio KCNQ2/metabolismo , Fenilendiaminas/uso terapéutico , Acúfeno/prevención & control , Animales , Animales Recién Nacidos , Anticonvulsivantes/química , Carbamatos/química , Modelos Animales de Enfermedad , Epilepsia/etiología , Epilepsia/genética , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Femenino , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Técnicas In Vitro , Canales de Potasio KCNQ/genética , Canal de Potasio KCNQ2/genética , Masculino , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/genética , Ratones , Ratones Endogámicos ICR , Ratones Noqueados , Mutación/genética , Fenilendiaminas/química , Ratas , Ratas Sprague-Dawley , Acúfeno/etiología , Factores de Transcripción/genética
6.
J Physiol ; 592(22): 5065-78, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-25217380

RESUMEN

Tinnitus is an auditory percept without an environmental acoustic correlate. Contemporary tinnitus models hypothesize tinnitus to be a consequence of maladaptive plasticity-induced disturbance of excitation-inhibition homeostasis, possibly convergent on medial geniculate body (MGB, auditory thalamus) and related neuronal networks. The MGB is an obligate acoustic relay in a unique position to gate auditory signals to higher-order auditory and limbic centres. Tinnitus-related maladaptive plastic changes of MGB-related neuronal networks may affect the gating function of MGB and enhance gain in central auditory and non-auditory neuronal networks, resulting in tinnitus. The present study examined the discharge properties of MGB neurons in the sound-exposure gap inhibition animal model of tinnitus. MGB single unit responses were obtained from awake unexposed controls and sound-exposed adult rats with behavioural evidence of tinnitus. MGB units in animals with tinnitus exhibited enhanced spontaneous firing, altered burst properties and increased rate-level function slope when driven by broadband noise and tones at the unit's characteristic frequency. Elevated patterns of neuronal activity and altered bursting showed a significant positive correlation with animals' tinnitus scores. Altered activity of MGB neurons revealed additional features of auditory system plasticity associated with tinnitus, which may provide a testable assay for future therapeutic and diagnostic development.


Asunto(s)
Potenciales de Acción , Cuerpos Geniculados/fisiopatología , Acúfeno/fisiopatología , Animales , Cuerpos Geniculados/citología , Neuronas/fisiología , Ratas , Ratas Long-Evans , Vigilia
7.
J Neurophysiol ; 111(2): 229-38, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24155003

RESUMEN

Gamma-aminobutyric acid (GABA) is the major inhibitory neurotransmitter in the central auditory system. Sensory thalamic structures show high levels of non-desensitizing extrasynaptic GABAA receptors (GABAARs) and a reduction in the redundancy of coded information. The present study compared the inhibitory potency of GABA acting at GABAARs between the inferior colliculus (IC) and the medial geniculate body (MGB) using quantitative in vivo, in vitro, and ex vivo experimental approaches. In vivo single unit studies compared the ability of half maximal inhibitory concentrations of GABA to inhibit sound-evoked temporal responses, and found that GABA was two to three times (P < 0.01) more potent at suppressing MGB single unit responses than IC unit responses. In vitro whole cell patch-clamp slice recordings were used to demonstrate that gaboxadol, a δ-subunit selective GABAAR agonist, was significantly more potent at evoking tonic inhibitory currents from MGB neurons than IC neurons (P < 0.01). These electrophysiological findings were supported by an in vitro receptor binding assay which used the picrotoxin analog [(3)H]TBOB to assess binding in the GABAAR chloride channel. MGB GABAARs had significantly greater total open chloride channel capacity relative to GABAARs in IC (P < 0.05) as shown by increased total [(3)H]TBOB binding. Finally, a comparative ex vivo measurement compared endogenous GABA levels and suggested a trend towards higher GABA concentrations in MGB than in IC. Collectively, these studies suggest that, per unit GABA, high affinity extrasynaptic and synaptic GABAARs confer a significant inhibitory GABAAR advantage to MGB neurons relative to IC neurons. This increased GABA sensitivity likely underpins the vital filtering role of auditory thalamus.


Asunto(s)
Neuronas GABAérgicas/fisiología , Cuerpos Geniculados/fisiología , Colículos Inferiores/fisiología , Potenciales Sinápticos , Ácido gamma-Aminobutírico/metabolismo , Animales , Cloruros/metabolismo , Agonistas de Receptores de GABA-A/farmacología , Neuronas GABAérgicas/metabolismo , Cuerpos Geniculados/citología , Cuerpos Geniculados/metabolismo , Colículos Inferiores/citología , Colículos Inferiores/metabolismo , Isoxazoles/farmacología , Masculino , Ratas , Ratas Endogámicas F344 , Ratas Long-Evans , Receptores de GABA-A/metabolismo , Sinapsis/metabolismo , Sinapsis/fisiología
8.
Eur J Pharmacol ; 718(1-3): 226-34, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24036349

RESUMEN

PNU-120596 (1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)urea), a Type-II positive allosteric modulator of α(7) nicotinic acetylcholine receptors inhibits α(7) desensitization and robustly prolongs openings of α(7) channels. However, these effects may render α(7) channels more accessible to positively charged molecules and thus, more susceptible to voltage-dependent open-channel-block-like inhibition. To test this hypothesis, choline chloride (i.e., choline), a selective endogenous α(7) agonist, and bicuculline methochloride (i.e., bicuculline), a competitive α(7) antagonist, were used as membrane voltage-sensitive probes in whole-cell voltage-clamp recordings from hippocampal CA1 interneurons in acute brain slices in the absence and presence of PNU-120596. PNU-120596 enhanced voltage-dependent inhibition of α(7) responses by bicuculline and choline. In the presence of PNU-120596, α(7) channels favored a burst-like kinetic modality in the presence, but not absence of bicuculline and bursts of α(7) openings were voltage-dependent. These results suggest that PNU-120596 alters the pharmacology of α(7) channels by making these channels more susceptible to voltage-dependent inhibitory interactions with positively charged drugs at concentrations that do not potently inhibit α(7) channels without PNU-120596. This inhibition imitates α(7) nicotinic receptor desensitization and compromises the potentiating anti-desensitization effects of PNU-120596 on α(7) nicotinic receptors. This unexpected dual action of PNU-120596, and possibly other Type-II positive allosteric modulators of α(7) nicotinic receptors, may lead to unanticipated α(7) channel-drug interactions and misinterpretation of α(7) single-channel data.


Asunto(s)
Isoxazoles/farmacología , Compuestos de Fenilurea/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Animales , Bicuculina/análogos & derivados , Bicuculina/farmacología , Colina/farmacología , Sinergismo Farmacológico , Femenino , Técnicas In Vitro , Activación del Canal Iónico/efectos de los fármacos , Masculino , Ratas , Ratas Sprague-Dawley , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/antagonistas & inhibidores
9.
Br J Pharmacol ; 169(8): 1862-78, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23713819

RESUMEN

BACKGROUND AND PURPOSE: Activation of α7 nicotinic acetylcholine receptors (nAChRs) can be neuroprotective. However, endogenous choline and ACh have not been regarded as potent neuroprotective agents because physiological levels of choline/ACh do not produce neuroprotective levels of α7 activation. This limitation may be overcome by the use of type-II positive allosteric modulators (PAMs-II) of α7 nAChRs, such as 1-(5-chloro-2,4-dimethoxyphenyl)-3-(5-methylisoxazol-3-yl)-urea (PNU-120596). This proof-of-concept study presents a novel neuroprotective paradigm that converts endogenous choline/ACh into potent neuroprotective agents in cerebral ischaemia by inhibiting α7 nAChR desensitization using PNU-120596. EXPERIMENTAL APPROACH: An electrophysiological ex vivo cell injury assay (to quantify the susceptibility of hippocampal neurons to acute injury by complete oxygen and glucose deprivation; COGD) and an in vivo middle cerebral artery occlusion model of ischaemia were used in rats. KEY RESULTS: Choline (20-200 µM) in the presence, but not absence of 1 µM PNU-120596 significantly delayed anoxic depolarization/injury of hippocampal CA1 pyramidal neurons, but not CA1 stratum radiatum interneurons, subjected to COGD in acute hippocampal slices and these effects were blocked by 20 nM methyllycaconitine, a selective α7 antagonist, thus, activation of α7 nAChRs was required. PNU-120596 alone was ineffective ex vivo. In in vivo experiments, both pre- and post-ischaemia treatments with PNU-120596 (30 mg·kg(-1) , s.c. and 1 mg·kg(-1) , i.v., respectively) significantly reduced the cortical/subcortical infarct volume caused by transient focal cerebral ischaemia. PNU-120596 (1 mg·kg(-1) , i.v., 30 min post-ischaemia) remained neuroprotective in rats subjected to a choline-deficient diet for 14 days prior to experiments. CONCLUSIONS AND IMPLICATIONS: PNU-120596 and possibly other PAMs-II significantly improved neuronal survival in cerebral ischaemia by augmenting neuroprotective effects of endogenous choline/ACh.


Asunto(s)
Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Isoxazoles/farmacología , Fármacos Neuroprotectores/farmacología , Agonistas Nicotínicos/metabolismo , Compuestos de Fenilurea/farmacología , Receptor Nicotínico de Acetilcolina alfa 7/efectos de los fármacos , Animales , Colina/metabolismo , Colina/farmacología , Hipocampo/citología , Hipocampo/metabolismo , Técnicas In Vitro , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Técnicas de Placa-Clamp , Ratas , Ratas Sprague-Dawley , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo
10.
Am J Physiol Cell Physiol ; 301(2): C347-61, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21613611

RESUMEN

The nucleus of the solitary tract (NTS) is the principal integrating relay in the processing of visceral sensory information. Functional nicotinic acetylcholine receptors (nAChRs) have been found on presynaptic glutamatergic terminals in subsets of caudal NTS neurons. Activation of these receptors has been shown to enhance synaptic release of glutamate and thus may modulate autonomic sensory-motor integration and visceral reflexes. However, the mechanisms of nAChR-mediated facilitation of synaptic glutamate release in the caudal NTS remain elusive. This study uses rat horizontal brainstem slices, patch-clamp electrophysiology, and fluorescent Ca(2+) imaging to test the hypothesis that a direct Ca(2+) entrance into glutamatergic terminals through active presynaptic non-α7- or α7-nAChR-mediated ion channels is sufficient to trigger synaptic glutamate release in subsets of caudal NTS neurons. The results of this study demonstrate that, in the continuous presence of 0.3 µM tetrodotoxin, a selective blocker of voltage-activated Na(+) ion channels, facilitation of synaptic glutamate release by activation of presynaptic nAChRs (detected as an increase in the frequency of miniature excitatory postsynaptic currents) requires external Ca(2+) but does not require activation of presynaptic Ca(2+) stores and presynaptic high- and low-threshold voltage-activated Ca(2+) ion channels. Expanding the knowledge of mechanisms and pharmacology of nAChRs in the caudal NTS should benefit therapeutic approaches aimed at restoring impaired autonomic homeostasis.


Asunto(s)
Ácido Glutámico/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Terminales Presinápticos/efectos de los fármacos , Receptores Nicotínicos/efectos de los fármacos , Núcleo Solitario/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Animales , Cafeína/farmacología , Señalización del Calcio/efectos de los fármacos , Potenciales Postsinápticos Excitadores , Técnicas In Vitro , Mecamilamina/farmacología , Microscopía Fluorescente , Antagonistas Nicotínicos/farmacología , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Núcleo Solitario/metabolismo , Temperatura , Tetrodotoxina/farmacología , Factores de Tiempo , Receptor Nicotínico de Acetilcolina alfa 7
11.
PLoS One ; 5(11): e13964, 2010 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-21103043

RESUMEN

BACKGROUND: The level of expression of functional α7-containing nicotinic acetylcholine receptors (nAChRs) in hippocampal CA1 pyramidal neurons is believed to be very low compared to hippocampal CA1 interneurons, and for many years this expression was largely overlooked. However, high densities of expression of functional α7-containing nAChRs in CA1 pyramidal neurons may not be necessary for triggering important cellular and network functions, especially if activation of α7-containing nAChRs occurs in the presence of positive allosteric modulators such as PNU-120596. METHODOLOGY/PRINCIPAL FINDINGS: An approach previously developed for α7-containing nAChRs expressed in tuberomammillary neurons was applied to investigate functional CA1 pyramidal α7-containing nAChRs using rat coronal hippocampal slices and patch-clamp electrophysiology. The majority (∼71%) of tested CA1 pyramidal neurons expressed low densities of functional α7-containing nAChRs as evidenced by small whole-cell responses to choline, a selective endogenous agonist of α7 nAChRs. These responses were potentiated by PNU-120596, a novel positive allosteric modulator of α7 nAChRs. The density of functional α7-containing nAChRs expressed in CA1 pyramidal neurons (and thus, the normalized net effect of activation, i.e., response net charge per unit of membrane capacitance per unit of time) was estimated to be ∼5% of the density observed in CA1 interneurons. The results of this study demonstrate that despite low levels of expression of functional pyramidal α7-containing nAChRs, physiological levels of choline (∼10 µM) are sufficient to activate these receptors and transiently depolarize and even excite CA1 pyramidal neurons in the presence of PNU-120596. The observed effects are possible because in the presence of 10 µM choline and 1-5 µM PNU-120596, a single opening of an individual pyramidal α7-containing nAChR ion channel appears to transiently depolarize (∼4 mV) the entire pyramidal neuron and occasionally trigger action potentials. CONCLUSIONS: 1) The majority of hippocampal CA1 pyramidal neurons express functional α7-containing nAChRs. In the absence of PNU-120596, a positive allosteric modulator of α7 nAChRs, a lack of responsiveness of some hippocampal CA1 pyramidal neurons to focal application of 0.5-1 mM choline does not imply a lack of expression of functional α7-containing nAChRs in these neurons. Rather, it may indicate a lack of detection of α7-containing nAChR-mediated currents by patch-clamp electrophysiology. 2) PNU-120596 can serve as a powerful tool for detection and enhancement of responsiveness of low densities of functional α7-containing nAChRs such as those present in hippocampal CA1 pyramidal neurons. 3) In the presence of PNU-120596, physiological concentrations of choline activate functional CA1 pyramidal α7-containing nAChRs and produce step-like currents that cause repetitive step-like depolarizations, occasionally triggering bursts of action potentials in CA1 pyramidal neurons. Therefore, the results of this study suggest that in the presence of PNU-120596 and possibly other positive allosteric modulators, endogenous choline may persistently activate CA1 pyramidal α7-containing nAChRs, enhance the excitability of CA1 pyramidal neurons and thus act as a potent therapeutic agent with potential neuroprotective and cognition-enhancing properties.


Asunto(s)
Colina/farmacología , Isoxazoles/farmacología , Compuestos de Fenilurea/farmacología , Células Piramidales/fisiología , Receptores Nicotínicos/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Región CA1 Hipocampal/citología , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Femenino , Masculino , Nootrópicos/farmacología , Técnicas de Placa-Clamp , Células Piramidales/citología , Células Piramidales/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA