Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 945: 174007, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38885710

RESUMEN

Climate warming poses a serious threat to soil biodiversity and crop yield. Application of organic fertilizer has been extensively practiced to improve soil health and crop productivity. However, information is limited about the effects of organic fertilizer on microbial communities and diversity (richness) under warming. Thus, to investigate the interactive effects of temperature (ambient temperature and warming) and fertilizer (chemical fertilizer and partial substitution of chemical fertilizer with organic fertilizer) on microbial properties and wheat yield, a two-factorial pot experiment was conducted using soils with high and low fertility The results showed that warming and organic fertilizer had minor effects on bacterial Shannon and Simpson indexes. Due to concomitant reductions in soil moisture, warming decreased the average Chao index by 5.4 % and Ace index by 3.8 % for soils with high and low fertility (P < 0.05). High-throughput sequence presented that dominated genus was Bacillus with spore-forming ability. Under warming and drying conditions, microbes with adaptive traits (spore-forming ability) would outcompete the other microbes, and decrease microbial Chao and Ace index (richness). However, organic fertilizer counteracted the adverse effects of warming on microbial richness attributed to positive interaction between temperature and fertilizer on soil nutrients and organic carbon. The strong relationships between bacterial richness and wheat yield, as well as soil nutrients, highlighted the importance of soil biodiversity in improving soil nutrients and crop productivity. Partial substitution of chemical fertilizer with organic fertilizer significantly increased wheat yield by 27.1 % and 14.9 % under ambient temperature and by 28.0 % and 19.6 % under warming for soils with high and low fertility, respectively. Overall, this study provided the possibility to increase bacterial richness related to nutrient turnover and crop production by organic fertilizer application with reduced chemical fertilizer, especially under climate warming.


Asunto(s)
Fertilizantes , Microbiología del Suelo , Suelo , Triticum , Triticum/microbiología , Suelo/química , Biodiversidad , Calentamiento Global , Microbiota , Bacterias , Agricultura/métodos
2.
J Environ Manage ; 360: 121088, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38735070

RESUMEN

Residue returning (RR) was widely implemented to increase soil organic carbon (SOC) in farmland. Extensive studies concentrated on the effects of RR on SOC quantity instead of SOC fractions at aggregate scales. This study investigated the effects of 20-year RR on the distribution of labile (e.g., dissolved, microbial biomass, and permanganate oxidizable organic) and stable (e.g., microbial necromass) carbon fractions at aggregate scales, as well as their contribution to SOC accumulation and mineralization. The findings indicated a synchronized variation in the carbon content of bacterial and fungal necromass. Residue retention (RR) notably elevated the concentration of bacterial and fungal necromass carbon, while it did not amplify the microbial necromass carbon (MNC) contribution to SOC when compared to residue removal (R0) in the topsoil (0-5 cm). In the subsoil (5-15 cm), RR increased the MNC contribution to SOC concentration by 21.2%-33.4% and mitigated SOC mineralization by 12.6% in micro-aggregates (P < 0.05). Besides, RR increased soil ß-glucosidase and peroxidase activities but decreased soil phenol oxidase activity in micro-aggregates (P < 0.05). These indicated that RR might accelerate cellulose degradation and conversion to stable microbial necromass C, and thus RR improved SOC stability because SOC occluded in micro-aggregates were more stable. Interestingly, SOC concentration was mainly regulated by MNC, while SOC mineralization was by dissolved organic carbon under RR, both of which were affected by soil carbon, nitrogen, and phosphorus associated nutrients and enzyme activities. The findings of this study emphasize that the paths of RR-induced SOC accumulation and mineralization were different, and depended on stable and labile C, respectively. Overall, long-term RR increased topsoil carbon quantity and subsoil carbon quality.


Asunto(s)
Carbono , Oryza , Suelo , Suelo/química , Oryza/crecimiento & desarrollo , Triticum , Microbiología del Suelo , Agricultura/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA