Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
iScience ; 27(9): 110656, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39310764

RESUMEN

Diabetes mellitus is induced by quantitative and qualitative decline in pancreatic ß cells. Although its radical therapy has not yet been established, ß cell regeneration is a promising option. We investigate here two mouse models of ß cell regeneration induced after ∼80% reduction in ß cell number: Cre/loxP-mediated ß cell ablation and partial pancreatectomy. Cre/loxP-mediated, mosaic-pattern of ß cell ablation by diphtheria toxin (DT) prompted rapid ß cell replenishment through repeated proliferation of rare, highly proliferative DT receptor-negative ß cells along with increase in Hes1, Neurog3, Ascl1, and Aldh1a3 (immature/dedifferentiated ß cell markers) and decrease in Mafa (a mature ß cell marker) in the islets. In contrast, pancreatectomy also prompted active proliferation, but with no change in these immature/dedifferentiated or mature ß cell markers. Our findings demonstrate that the mode of ß cell regeneration differs between Cre/loxP-mediated ß cell ablation and surgical ß cell reduction, and the former involves ß cell dedifferentiation followed by active repetitive cell proliferation of a small population of ß cells.

2.
Genes Cells ; 2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39245559

RESUMEN

Histone modifications are catalyzed and recognized by specific proteins to regulate dynamic DNA metabolism processes. NSD2 is a histone H3 lysine 36 (H3K36)-specific methyltransferase that is associated with both various transcription regulators and DNA repair factors. Specifically, it has been implicated in the repair of DNA double-strand breaks (DSBs); however, the role of NSD2 during DSB repair remains enigmatic. Here, we show that NSD2 does not accumulate at DSB sites and that it is not further mobilized by DSB formation. Using three different DSB repair reporter systems, which contained the endonuclease site in the active thymidine kinase gene (TK) locus, we demonstrated separate dose-dependent effects of NSD2 on homologous recombination (HR), canonical-non-homologous end joining (c-NHEJ), and non-canonical-NHEJ (non-c-NHEJ). Endogenous NSD2 has a role in repressing non-c-NHEJ, without affecting DSB repair efficiency by HR or total NHEJ. Furthermore, overexpression of NSD2 promotes c-NHEJ repair and suppresses HR repair. Therefore, we propose that NSD2 has functions in chromatin integrity at the active regions during DSB repair.

3.
Cancer Sci ; 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39196700

RESUMEN

Cancer cells show a dynamic metabolic landscape, requiring a sufficient supply of nucleotides to proliferate. They are highly dependent on de novo purine biosynthetic pathways for their nucleotide requirements. Phosphoribosyl pyrophosphate amidotransferase (PPAT), catalyzing the first step of de novo purine biosynthesis, is highly expressed in various cancers. We observed an increased expression of PPAT in nasopharyngeal carcinoma (NPC). Moreover, our ribonucleic acid sequencing analysis showed high PPAT expression in Epstein-Barr virus-positive NPC, which was supported by in vitro analysis. Through a gene knockdown study, we showed that the suppression of PPAT expression reduced the proliferation and invasion of NPC cells. We also demonstrated the regulation of PPAT by glutamine, a cosubstrate for PPAT. A glutamine antagonist, 6-diazo-5-oxo-L-norleucine, blocked glutamine-mediated induction of PPAT and reduced NPC cell proliferation. Immunohistochemical analysis of PPAT in NPC tissues revealed increased expression of PPAT with disease progression, which was significantly associated with poor prognosis. In summary, this study highlighted the biological function of PPAT in NPC, establishing its potential as a novel prognostic biomarker for aggressive NPC and a promising therapeutic target.

4.
Nucleic Acids Res ; 52(16): 9463-9480, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-38989615

RESUMEN

The H3K4 methyltransferase SETD1A plays an essential role in both development and cancer. However, essential components involved in SETD1A chromatin binding remain unclear. Here, we discovered that BOD1L exhibits the highest correlated SETD1A co-dependency in human cancer cell lines. BOD1L knockout reduces leukemia cells in vitro and in vivo, and mimics the transcriptional profiles observed in SETD1A knockout cells. The loss of BOD1L immediately reduced SETD1A distribution at transcriptional start sites (TSS), induced transcriptional elongation defect, and increased the RNA polymerase II content at TSS; however, it did not reduce H3K4me3. The Shg1 domain of BOD1L has a DNA binding ability, and a tryptophan residue (W104) in the domain recruits SETD1A to chromatin through the association with SETD1A FLOS domain. In addition, the BOD1L-SETD1A complex associates with transcriptional regulators, including E2Fs. These results reveal that BOD1L mediates chromatin and SETD1A, and regulates the non-canonical function of SETD1A in transcription.


Asunto(s)
Cromatina , N-Metiltransferasa de Histona-Lisina , Histonas , Animales , Humanos , Ratones , Línea Celular Tumoral , Cromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Leucemia/genética , Leucemia/metabolismo , Unión Proteica , Dominios Proteicos , ARN Polimerasa II/metabolismo , Sitio de Iniciación de la Transcripción , Transcripción Genética
5.
Hypertens Res ; 47(9): 2405-2415, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38926588

RESUMEN

Fetal malnutrition has been reported to induce hypertension and renal injury in adulthood. We hypothesized that this hypertension and renal injury would be associated with abnormal epigenetic memory of stem and progenitor cells contributing to organization in offspring due to fetal malnutrition. We measured blood pressure (BP) for 60 weeks in offspring of pregnant rats fed a normal protein diet (Control), low-protein diet (LP), and LP plus taurine (LPT) in the fetal period. We used western blot analysis to evaluate the expression of αSMA and renin in CD44-positive renal mesenchymal stem cells (MSCs) during differentiation by TGF-ß1. We measured kidney label-retaining cells (LRCs) at 11 weeks of age and formation of endothelial progenitor cells (EPCs) at 60 weeks of age from the offspring with fetal malnutrition. Epigenetics of the renal MSCs at 14 weeks were investigated by ATAC-sequence and RNA-sequence analyses. BP was significantly higher in LP than that in Control and LPT after 45-60 weeks of age. Numbers of LRCs and EPC colonies were significantly lower in LP than in Control. Renal MSCs from LP already showed expression of h-caldesmon, αSMA, LXRα, and renin before their differentiation. Epigenetic analyses identified PAR2, Chac1, and Tspan6 genes in the abnormal differentiation of renal MSCs. These findings suggested that epigenetic abnormalities of stem and progenitor cell memory cause hypertension and renal injury that appear in adulthood of offspring with fetal malnutrition.


Asunto(s)
Epigénesis Genética , Hipertensión , Células Madre Mesenquimatosas , Animales , Femenino , Embarazo , Ratas , Riñón/patología , Trastornos Nutricionales en el Feto , Efectos Tardíos de la Exposición Prenatal , Presión Sanguínea , Ratas Sprague-Dawley , Masculino , Desnutrición/complicaciones , Dieta con Restricción de Proteínas/efectos adversos , Renina , Memoria Epigenética
6.
Proc Natl Acad Sci U S A ; 121(27): e2320727121, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38923989

RESUMEN

Asthma is a widespread airway disorder where GATA3-dependent Type-2 helper T (Th2) cells and group 2 innate lymphoid cells (ILC2s) play vital roles. Asthma-associated single nucleotide polymorphisms (SNPs) are enriched in a region located 926-970 kb downstream from GATA3 in the 10p14 (hG900). However, it is unknown how hG900 affects the pathogenesis of allergic airway inflammation. To investigate the roles of the asthma-associated GATA3 enhancer region in experimental allergic airway inflammation, we first examined the correlation between GATA3 expression and the activation of the hG900 region was analyzed by flow cytometry and ChIP-qPCR. We found that The activation of enhancers in the hG900 region was strongly correlated to the levels of GATA3 in human peripheral T cell subsets. We next generated mice lacking the mG900 region (mG900KO mice) were generated by the CRISPR-Cas9 system, and the development and function of helper T cells and ILCs in mG900KO mice were analyzed in steady-state conditions and allergic airway inflammation induced by papain or house dust mite (HDM). The deletion of the mG900 did not affect the development of lymphocytes in steady-state conditions or allergic airway inflammation induced by papain. However, mG900KO mice exhibited reduced allergic inflammation and Th2 differentiation in the HDM-induced allergic airway inflammation. The analysis of the chromatin conformation around Gata3 by circular chromosome conformation capture coupled to high-throughput sequencing (4C-seq) revealed that the mG900 region interacted with the transcription start site of Gata3 with an influencing chromatin conformation in Th2 cells. These findings indicate that the mG900 region plays a pivotal role in Th2 differentiation and thus enhances allergic airway inflammation.


Asunto(s)
Asma , Diferenciación Celular , Elementos de Facilitación Genéticos , Factor de Transcripción GATA3 , Células Th2 , Factor de Transcripción GATA3/metabolismo , Factor de Transcripción GATA3/genética , Animales , Células Th2/inmunología , Ratones , Diferenciación Celular/inmunología , Asma/inmunología , Asma/genética , Asma/patología , Humanos , Ratones Noqueados , Inflamación/inmunología , Inflamación/genética , Hipersensibilidad/inmunología , Hipersensibilidad/genética , Polimorfismo de Nucleótido Simple , Ratones Endogámicos C57BL
7.
Nat Commun ; 15(1): 4772, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38858384

RESUMEN

The underlying mechanisms of atherosclerosis, the second leading cause of death among Werner syndrome (WS) patients, are not fully understood. Here, we establish an in vitro co-culture system using macrophages (iMφs), vascular endothelial cells (iVECs), and vascular smooth muscle cells (iVSMCs) derived from induced pluripotent stem cells. In co-culture, WS-iMφs induces endothelial dysfunction in WS-iVECs and characteristics of the synthetic phenotype in WS-iVSMCs. Transcriptomics and open chromatin analysis reveal accelerated activation of type I interferon signaling and reduced chromatin accessibility of several transcriptional binding sites required for cellular homeostasis in WS-iMφs. Furthermore, the H3K9me3 levels show an inverse correlation with retrotransposable elements, and retrotransposable element-derived double-stranded RNA activates the DExH-box helicase 58 (DHX58)-dependent cytoplasmic RNA sensing pathway in WS-iMφs. Conversely, silencing type I interferon signaling in WS-iMφs rescues cell proliferation and suppresses cellular senescence and inflammation. These findings suggest that Mφ-specific inhibition of type I interferon signaling could be targeted to treat atherosclerosis in WS patients.


Asunto(s)
Aterosclerosis , Inflamación , Interferón Tipo I , Macrófagos , Retroelementos , Síndrome de Werner , Interferón Tipo I/metabolismo , Síndrome de Werner/genética , Síndrome de Werner/metabolismo , Humanos , Aterosclerosis/metabolismo , Aterosclerosis/inmunología , Aterosclerosis/genética , Aterosclerosis/patología , Macrófagos/metabolismo , Macrófagos/inmunología , Retroelementos/genética , Inflamación/metabolismo , Inflamación/patología , Inflamación/genética , Células Madre Pluripotentes Inducidas/metabolismo , Transducción de Señal , Técnicas de Cocultivo , Miocitos del Músculo Liso/metabolismo , Células Endoteliales/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/genética , Senescencia Celular , Proliferación Celular
8.
NAR Cancer ; 6(2): zcae020, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38720882

RESUMEN

Enhancer cis-regulatory elements play critical roles in gene regulation at many stages of cell growth. Enhancers in cancer cells also regulate the transcription of oncogenes. In this study, we performed a comprehensive analysis of long-range chromatin interactions, histone modifications, chromatin accessibility and expression in two gastric cancer (GC) cell lines compared to normal gastric epithelial cells. We found that GC-specific enhancers marked by histone modifications can activate a population of genes, including some oncogenes, by interacting with their proximal promoters. In addition, motif analysis of enhancer-promoter interacting enhancers showed that GC-specific transcription factors are enriched. Among them, we found that MYB is crucial for GC cell growth and activated by the enhancer with an enhancer-promoter loop and TCF7 upregulation. Clinical GC samples showed epigenetic activation of enhancers at the MYB locus and significant upregulation of TCF7 and MYB, regardless of molecular GC subtype and clinicopathological factors. Single-cell RNA sequencing of gastric mucosa with intestinal metaplasia showed high expression of TCF7 and MYB in intestinal stem cells. When we inactivated the loop-forming enhancer at the MYB locus using CRISPR interference (dCas9-KRAB), GC cell growth was significantly inhibited. In conclusion, we identified MYB as an oncogene activated by a loop-forming enhancer and contributing to GC cell growth.

9.
Sci Immunol ; 9(95): eade3814, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38787963

RESUMEN

Patients with heart failure (HF) often experience repeated acute decompensation and develop comorbidities such as chronic kidney disease and frailty syndrome. Although this suggests pathological interaction among comorbidities, the mechanisms linking them are poorly understood. Here, we identified alterations in hematopoietic stem cells (HSCs) as a critical driver of recurrent HF and associated comorbidities. Bone marrow transplantation from HF-experienced mice resulted in spontaneous cardiac dysfunction and fibrosis in recipient mice, as well as increased vulnerability to kidney and skeletal muscle insults. HF enhanced the capacity of HSCs to generate proinflammatory macrophages. In HF mice, global chromatin accessibility analysis and single-cell RNA-seq showed that transforming growth factor-ß (TGF-ß) signaling was suppressed in HSCs, which corresponded with repressed sympathetic nervous activity in bone marrow. Transplantation of bone marrow from mice in which TGF-ß signaling was inhibited similarly exacerbated cardiac dysfunction. Collectively, these results suggest that cardiac stress modulates the epigenome of HSCs, which in turn alters their capacity to generate cardiac macrophage subpopulations. This change in HSCs may be a common driver of repeated HF events and comorbidity by serving as a key carrier of "stress memory."


Asunto(s)
Insuficiencia Cardíaca , Inmunidad Innata , Memoria Inmunológica , Ratones Endogámicos C57BL , Animales , Insuficiencia Cardíaca/inmunología , Ratones , Masculino , Multimorbilidad , Factor de Crecimiento Transformador beta/metabolismo , Células Madre Hematopoyéticas/inmunología , Transducción de Señal/inmunología , Macrófagos/inmunología , Inmunidad Entrenada
10.
Cureus ; 16(2): e55175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38558649

RESUMEN

Pancreatic cancer is an intractable malignancy associated with a dismal prognosis. Undifferentiated carcinoma, a rare subtype, poses a clinical challenge owing to a limited understanding of its molecular characteristics. In this study, we conducted genomic analysis specifically on a case of undifferentiated carcinoma of the pancreas exhibiting squamous differentiation. An 80-year-old male, previously treated for colorectal cancer, presented with a mass with central cystic degeneration in the pancreatic tail. The mass was diagnosed pathologically as undifferentiated carcinoma of the pancreas with squamous differentiation. Despite surgical resection and chemotherapy, the patient faced early postoperative recurrence, emphasizing the aggressive nature of this malignancy. Genomic analysis of distinct histologic components revealed some common mutations between undifferentiated and squamous components, including Kirsten rat sarcoma virus (KRAS) and TP53. Notably, the squamous component harbored some specific mutations in SMARCA4 and SMARCB1 genes that code for members of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex. The common mutations in the undifferentiated and squamous cell carcinoma components from this analysis suggest that they originate from a common origin. The discussion also underscores the scarcity of genomic analyses on undifferentiated carcinoma of the pancreas, with existing literature pointing to SWI/SNF complex-related gene mutations. However, our case introduces chromatin remodeling factor mutations as relevant in squamous differentiation. In conclusion, this study provides valuable insights into the genomic landscape of undifferentiated pancreatic carcinoma with squamous differentiation. These findings suggest the importance of further research and targeted therapies to improve the management of undifferentiated carcinoma of the pancreas and enhance patient outcomes.

11.
Cancer Lett ; 588: 216815, 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38490329

RESUMEN

Epigenetic modifiers are upregulated during the process of prostate cancer, acquiring resistance to castration therapy and becoming lethal metastatic castration-resistant prostate cancer (CRPC). However, the relationship between regulation of histone modifications and chromatin structure in CRPC has yet not fully been validated. Here, we reanalyzed publicly available clinical transcriptome and clinical outcome data and identified NSD2, a histone methyltransferase that catalyzes H3K36me2, as an epigenetic modifier that was upregulated in CRPC and whose increased expression in prostate cancer correlated with higher recurrence rate. We performed ChIP-seq, RNA-seq, and Hi-C to conduct comprehensive epigenomic and transcriptomic analyses to identify epigenetic reprogramming in CRPC. In regions where H3K36me2 was increased, H3K27me3 was decreased, and the compartment was shifted from inactive to active. In these regions, 68 aberrantly activated genes were identified as candidate downstream genes of NSD2 in CRPC. Among these genes, we identified KIF18A as critical for CRPC growth. Under NSD2 upregulation in CRPC, epigenetic alteration with H3K36me2-gain and H3K27me3-loss occurs accompanying with an inactive-to-active compartment shift, suggesting that histone modification and chromatin structure cooperatively change prostate carcinogenesis.


Asunto(s)
Cromatina , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Humanos , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Línea Celular Tumoral , Perfilación de la Expresión Génica , Receptores Androgénicos/metabolismo , Cinesinas/metabolismo
12.
Nat Commun ; 15(1): 2588, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38519457

RESUMEN

We recently achieved the first-in-human transfusion of induced pluripotent stem cell-derived platelets (iPSC-PLTs) as an alternative to standard transfusions, which are dependent on donors and therefore variable in supply. However, heterogeneity characterized by thrombopoiesis-biased or immune-biased megakaryocytes (MKs) continues to pose a bottleneck against the standardization of iPSC-PLT manufacturing. To address this problem, here we employ microRNA (miRNA) switch biotechnology to distinguish subpopulations of imMKCLs, the MK cell lines producing iPSC-PLTs. Upon miRNA switch-based screening, we find imMKCLs with lower let-7 activity exhibit an immune-skewed transcriptional signature. Notably, the low activity of let-7a-5p results in the upregulation of RAS like proto-oncogene B (RALB) expression, which is crucial for the lineage determination of immune-biased imMKCL subpopulations and leads to the activation of interferon-dependent signaling. The dysregulation of immune properties/subpopulations, along with the secretion of inflammatory cytokines, contributes to a decline in the quality of the whole imMKCL population.


Asunto(s)
Células Madre Pluripotentes Inducidas , MicroARNs , Humanos , Megacariocitos , Células Madre Pluripotentes Inducidas/metabolismo , Plaquetas/metabolismo , Trombopoyesis/genética , MicroARNs/genética , MicroARNs/metabolismo
13.
EBioMedicine ; 102: 105057, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490101

RESUMEN

BACKGROUND: Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV)-associated malignant epithelial tumor endemic to Southern China and Southeast Asia. While previous studies have revealed a low frequency of gene mutations in NPC, its epigenomic aberrations are not fully elucidated apart from DNA hypermethylation. Epigenomic rewiring and enhancer dysregulation, such as enhancer hijacking due to genomic structural changes or extrachromosomal DNA, drive cancer progression. METHODS: We conducted Hi-C, 4C-seq, ChIP-seq, and RNA-seq analyses to comprehensively elucidate the epigenome and interactome of NPC using C666-1 EBV(+)-NPC cell lines, NP69T immortalized nasopharyngeal epithelial cells, clinical NPC biopsy samples, and in vitro EBV infection in HK1 and NPC-TW01 EBV(-) cell lines. FINDINGS: In C666-1, the EBV genome significantly interacted with inactive B compartments of host cells; the significant association of EBV-interacting regions (EBVIRs) with B compartment was confirmed using clinical NPC and in vitro EBV infection model. EBVIRs in C666-1 showed significantly higher levels of active histone modifications compared with NP69T. Aberrant activation of EBVIRs after EBV infection was validated using in vitro EBV infection models. Within the EBVIR-overlapping topologically associating domains, 14 H3K4me3(+) genes were significantly upregulated in C666-1. Target genes of EBVIRs including PLA2G4A, PTGS2 and CITED2, interacted with the enhancers activated in EBVIRs and were highly expressed in NPC, and their knockdown significantly reduced cell proliferation. INTERPRETATION: The EBV genome contributes to NPC tumorigenesis through "enhancer infestation" by interacting with the inactive B compartments of the host genome and aberrantly activating enhancers. FUNDING: The funds are listed in the Acknowledgements section.


Asunto(s)
Carcinoma , Infecciones por Virus de Epstein-Barr , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , Herpesvirus Humano 4/genética , Infecciones por Virus de Epstein-Barr/complicaciones , Infecciones por Virus de Epstein-Barr/genética , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Carcinogénesis/genética , ADN , Proteínas Represoras , Transactivadores
14.
Cancer Res Commun ; 4(2): 279-292, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38240752

RESUMEN

Gastric cancer metastasis is a major cause of mortality worldwide. Inhibition of RUNX3 in gastric cancer cell lines reduced migration, invasion, and anchorage-independent growth in vitro. Following splenic inoculation, CRISPR-mediated RUNX3-knockout HGC-27 cells show suppression of xenograft growth and liver metastasis. We interrogated the potential of RUNX3 as a metastasis driver in gastric cancer by profiling its target genes. Transcriptomic analysis revealed strong involvement of RUNX3 in the regulation of multiple developmental pathways, consistent with the notion that Runt domain transcription factor (RUNX) family genes are master regulators of development. RUNX3 promoted "cell migration" and "extracellular matrix" programs, which are necessary for metastasis. Of note, we found pro-metastatic genes WNT5A, CD44, and VIM among the top differentially expressed genes in RUNX3 knockout versus control cells. Chromatin immunoprecipitation sequencing and HiChIP analyses revealed that RUNX3 bound to the enhancers and promoters of these genes, suggesting that they are under direct transcriptional control by RUNX3. We show that RUNX3 promoted metastasis in part through its upregulation of WNT5A to promote migration, invasion, and anchorage-independent growth in various malignancies. Our study therefore reveals the RUNX3-WNT5A axis as a key targetable mechanism for gastric cancer metastasis. SIGNIFICANCE: Subversion of RUNX3 developmental gene targets to metastasis program indicates the oncogenic nature of inappropriate RUNX3 regulation in gastric cancer.


Asunto(s)
Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Perfilación de la Expresión Génica , Genes del Desarrollo , Neoplasias Gástricas/genética , Regulación hacia Arriba/genética
15.
Oncology ; 102(8): 720-731, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38262376

RESUMEN

INTRODUCTION: Pseudomyxoma peritonei (PMP) is a disease characterized by progressive accumulation of intraperitoneal mucinous ascites produced by neoplasms in the abdominal cavity. Since the prognosis of patients with PMP remains unsatisfactory, the development of effective therapeutic drug(s) is a matter of pressing concern. Genetic analyses of PMP have clarified the frequent activation of GNAS and/or KRAS. However, the involvement of global epigenetic alterations in PMPs has not been reported. METHODS: To clarify the genetic background of the 15 PMP tumors, we performed genetic analysis using AmpliSeq Cancer HotSpot Panel v2. We further investigated global DNA methylation in the 15 tumors and eight noncancerous colonic epithelial tissues using MethylationEPIC array BeadChip (Infinium 850k) containing a total of 865,918 probes. RESULTS: This is the first report of comprehensive DNA methylation profiles of PMPs in the world. We clarified that the 15 PMPs could be classified into at least two epigenotypes, unique methylation epigenotype (UME) and normal-like methylation epigenotype (NLME), and that genes associated with neuronal development and synaptic signaling may be involved in the development of PMPs. In addition, we identified a set of hypermethylation marker genes such as HOXD1 and TSPYL5 in the 15 PMPs. CONCLUSIONS: These findings may help the understanding of the molecular mechanism(s) of PMP and contribute to the development of therapeutic strategies for this life-threatening disease.


Asunto(s)
Neoplasias del Apéndice , Metilación de ADN , Seudomixoma Peritoneal , Humanos , Seudomixoma Peritoneal/genética , Seudomixoma Peritoneal/patología , Neoplasias del Apéndice/genética , Neoplasias del Apéndice/patología , Femenino , Masculino , Persona de Mediana Edad , Anciano , Neoplasias Peritoneales/genética , Epigénesis Genética , Estudio de Asociación del Genoma Completo , Adulto
16.
Int J Cancer ; 154(5): 895-911, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37907830

RESUMEN

Epstein-Barr virus (EBV)-associated nasopharyngeal carcinoma (NPC) cells have high metastatic potential. Recent research has revealed that the interaction of between tumor cells and the surrounding stroma plays an important role in tumor invasion and metastasis. In this study, we showed the prognostic value of expression of SPARC, an extracellular matrix protein with multiple cellular functions, in normal adjacent tissues (NAT) surrounding NPC. In the immunohistochemical analysis of 51 NPC biopsy specimens, SPARC expression levels were significantly elevated in the NAT of EBER (EBV-encoded small RNA)-positive NPC compared to that in the NAT of EBER-negative NPC. Moreover, increased SPARC expression in NAT was associated with a worsening of overall survival. The enrichment analysis of RNA-seq of publicly available NPC and NAT surrounding NPC data showed that high SPARC expression in NPC was associated with epithelial mesenchymal transition promotion, and there was a dynamic change in the gene expression profile associated with interference of cellular proliferation in NAT, including SPARC expression. Furthermore, EBV-positive NPC cells induce SPARC expression in normal nasopharyngeal cells via exosomes. Induction of SPARC in cancer-surrounding NAT cells reduced intercellular adhesion in normal nasopharyngeal structures and promoted cell competition between cancer cells and normal epithelial cells. These results suggest that epithelial cells loosen their own binding with the extracellular matrix as well as stromal cells, facilitating the invasion of tumor cells into the adjacent stroma by activating cell competition. Our findings reveal a new mechanism by which EBV creates a pro-metastatic microenvironment by upregulating SPARC expression in NPC.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Exosomas , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/metabolismo , Herpesvirus Humano 4/genética , Neoplasias Nasofaríngeas/patología , Pronóstico , Exosomas/metabolismo , Microambiente Tumoral , Osteonectina/genética , Osteonectina/metabolismo
17.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139171

RESUMEN

The interaction between mRNA and ribosomal RNA (rRNA) transcription in cancer remains unclear. RNAP I and II possess a common N-terminal tail (NTT), RNA polymerase subunit RPB6, which interacts with P62 of transcription factor (TF) IIH, and is a common target for the link between mRNA and rRNA transcription. The mRNAs and rRNAs affected by FUBP1-interacting repressor (FIR) were assessed via RNA sequencing and qRT-PCR analysis. An FIR, a c-myc transcriptional repressor, and its splicing form FIRΔexon2 were examined to interact with P62. Protein interaction was investigated via isothermal titration calorimetry measurements. FIR was found to contain a highly conserved region homologous to RPB6 that interacts with P62. FIRΔexon2 competed with FIR for P62 binding and coactivated transcription of mRNAs and rRNAs. Low-molecular-weight chemical compounds that bind to FIR and FIRΔexon2 were screened for cancer treatment. A low-molecular-weight chemical, BK697, which interacts with FIRΔexon2, inhibited tumor cell growth with rRNA suppression. In this study, a novel coactivation pathway for cancer-related mRNA and rRNA transcription through TFIIH/P62 by FIRΔexon2 was proposed. Direct evidence in X-ray crystallography is required in further studies to show the conformational difference between FIR and FIRΔexon2 that affects the P62-RBP6 interaction.


Asunto(s)
Neoplasias , Proteínas Represoras , Humanos , Factores de Empalme de ARN/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/genética , Empalme Alternativo , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Factor de Transcripción TFIIH/genética , Factor de Transcripción TFIIH/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/metabolismo
18.
EMBO Rep ; 24(10): e57108, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37535603

RESUMEN

The H3K4 methyltransferase SETD1A plays a crucial role in leukemia cell survival through its noncatalytic FLOS domain-mediated recruitment of cyclin K and regulation of DNA damage response genes. In this study, we identify a functional nuclear localization signal in and interaction partners of the FLOS domain. Our screen for FLOS domain-binding partners reveals that the SETD1A FLOS domain binds mitosis-associated proteins BuGZ/BUB3. Inhibition of both cyclin K and BuGZ/BUB3-binding motifs in SETD1A shows synergistic antileukemic effects. BuGZ/BUB3 localize to SETD1A-bound promoter-TSS regions and SETD1A-negative H3K4me1-positive enhancer regions adjacent to SETD1A target genes. The GLEBS motif and intrinsically disordered region of BuGZ are required for both SETD1A-binding and leukemia cell proliferation. Cell-cycle-specific SETD1A restoration assays indicate that SETD1A expression at the G1/S phase of the cell cycle promotes both the expression of DNA damage response genes and cell cycle progression in leukemia cells.


Asunto(s)
Leucemia , Mitosis , Humanos , Mitosis/genética , Ciclinas/genética , Ciclinas/metabolismo , Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Leucemia/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética
19.
Cancer Sci ; 114(7): 3003-3013, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37082886

RESUMEN

Lung adenocarcinoma is classified morphologically into five histological subtypes according to the WHO classification. While each histological subtype correlates with a distinct prognosis, the molecular basis has not been fully elucidated. Here we conducted DNA methylation analysis of 30 lung adenocarcinoma cases annotated with the predominant histological subtypes and three normal lung cases using the Infinium BeadChip. Unsupervised hierarchical clustering analysis revealed three subgroups with different methylation levels: high-, intermediate-, and low-methylation epigenotypes (HME, IME, and LME). Micropapillary pattern (MPP)-predominant cases and those with MPP components were significantly enriched in HME (p = 0.02 and p = 0.03, respectively). HME cases showed a significantly poor prognosis for recurrence-free survival (p < 0.001) and overall survival (p = 0.006). We identified 365 HME marker genes specifically hypermethylated in HME cases with enrichment of "cell morphogenesis" related genes; 305 IME marker genes hypermethylated in HME and IME, but not in LME, with enrichment "embryonic organ morphogenesis"-related genes; 257 Common marker genes hypermethylated commonly in all cancer cases, with enrichment of "regionalization"-related genes. We extracted surrogate markers for each epigenotype and designed pyrosequencing primers for five HME markers (TCERG1L, CXCL12, FAM181B, HOXA11, GAD2), three IME markers (TBX18, ZNF154, NWD2) and three Common markers (SCT, GJD2, BARHL2). DNA methylation profiling using Infinium data was validated by pyrosequencing, and HME cases defined by pyrosequencing results also showed the worse recurrence-free survival. In conclusion, lung adenocarcinomas are stratified into subtypes with distinct DNA methylation levels, and the high-methylation subtype correlated with MPP-predominant cases and those with MPP components and showed a poor prognosis.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Metilación de ADN/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Pronóstico , Biomarcadores , Neoplasias Pulmonares/patología , Estadificación de Neoplasias , Factores de Transcripción de Tipo Kruppel/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA