Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemosphere ; 297: 134103, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35219711

RESUMEN

PM2.5 samples were collected during 2017-2018 at two Eastern Mediterranean urban sites in Greece, Athens and Patra, in order to study the abundances, the seasonal trends, the sources and the possible impact of gas phase pollutants on organosulfate formation. Each of the studied groups, except that of aromatic organosulfates, presented higher concentrations in Patra compared to those measured in Athens, from 1.1 (nitro-oxy organosulfates) to 3.6 times (isoprene organosulfates). At both sites, isoprene organosulfates was the dominant group which accounted on average for more than 50% of the total measured organosulfates, with the contribution being more than 80% during summer. Strong seasonality was observed at both sites, regarding the isoprene organosulfates, with an almost 21-fold increase from winter to summer. The same pattern, but to a lesser extent, was also observed for monoterpenes organosulfates at both sites. Alkyl organosulfates followed an identical seasonal trend with the highest mean concentrations observed during spring followed by autumn. The seasonality of anthropogenic organosulfates, multisource organosulfates and nitro-oxy organosulfates differed among the two sites or presented a more compound-specific variation. The isoprene-epoxydiol pathway appeared to be the dominant pathway of isoprene transformation, with the compounds iOS211, iOS213 and iOS215 being the major isoprene organosulfate compounds at both sites. Organosulfate contribution to the concentration of particulate matter presented common variation at both sites, ranging from 0.20 ± 0.14% (winter) to 2.5 ± 1.2% (summer) and from 0.21 ± 0.13% (winter) to 5.0 ± 2.5% (summer) for Athens and Patra, respectively. The increased NOx levels in Athens, appeared to affect isoprene organosulfate formation as well as the formation of monoterpene and decalin nitro-oxy organosulfates. Principal component analysis followed by multiple linear regression analysis highlighted the dominance of isoprene organosulfates. In Athens, the possible impact of transportation emissions on the formation of monoterpene nitro-oxy organosulfates is indicated while the correlation of naphthalene organosulfates with low molecular weight polycyclic aromatic hydrocarbons suggests that vehicle emissions may be a significant source. In Patra, the possible contribution of sea on methyl sulfate levels is denoted.


Asunto(s)
Contaminantes Atmosféricos , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Butadienos , China , Ciudades , Monitoreo del Ambiente , Hemiterpenos , Monoterpenos/análisis , Material Particulado/análisis , Estaciones del Año , Emisiones de Vehículos/análisis
2.
J Trace Elem Med Biol ; 68: 126833, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34371329

RESUMEN

BACKGROUND: The present study focuses on the evaluation of potential relationships between trace elements and acute and chronic types of leukemia, via the determination of their levels in human blood serum. METHODS: A total of 199 serum samples from a Greek cohort were examined, including both leukemia cases and controls. Elements' analysis was carried out using inductively coupled plasma mass spectrometry (ICP-MS) and demographic features such as age, gender, smoking habits and area of residence were recorded and statistically treated applying Shapiro-Wilk, Kolmogorov-Smirnov, Mann Whitney and Kruskal Wallis tests (p < 0.05). Spearman correlation and principal component analysis (PCA) were also performed to investigate possible associations. RESULTS: The results demonstrated significantly higher (p < 0.05) trace elements concentrations in cases' serum compared to that of controls excluding Ba, with Cu (median concentration 1295 µg L-1) being the most abundant in cases. Additionally, concentration of toxic Pb and Cd were found at seven and four fold higher concentrations in cases, respectively. Among the trace elements examined, only Rb (164 µg L-1) was detected in higher concentrations in controls. Ba, Cd and Co presented the lowest concentrations (lower than 1 µg L-1). PCA was performed for overall and classified data, indicating a stronger relation among the toxic As, Cd, Ni and Pb in cases than controls, particularly referring to smokers and industrial sites' residents. Hematological parameters and factors such as age and gender did not present any significant outcome or correlation. CONCLUSIONS: The findings from this pilot study suggest a potential relationship between metals and leukemia, especially concerning the toxic ones. Results from the employed source apportionment tools imply that smoking and atmospheric degradation may be positively related with higher metal serum levels in leukemia patients.


Asunto(s)
Leucemia , Oligoelementos , Adulto , Cadmio , Grecia , Humanos , Plomo , Proyectos Piloto , Suero/química , Oligoelementos/análisis , Oligoelementos/sangre
3.
Molecules ; 26(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34071927

RESUMEN

Cardiovascular diseases (CVDs) have been associated with environmental pollutants. The scope of this study is to assess any potential relation of polycyclic aromatic hydrocarbons (PAHs), their hydroxylated derivatives, and trace elements with heart failure via their direct determination in human serum of Greek citizens residing in different areas. Therefore, we analyzed 131 samples including cases (heart failure patients) and controls (healthy donors), and the respective demographic data were collected. Significantly higher concentrations (p < 0.05) were observed in cases' serum regarding most of the examined PAHs and their derivatives with phenanthrene, fluorene, and fluoranthene being the most abundant (median of >50 µg L-1). Among the examined trace elements, As, Cd, Cu, Hg, Ni, and Pb were measured at statistically higher concentrations (p < 0.05) in cases' samples, with only Cr being significantly higher in controls. The potential impact of environmental factors such as smoking and area of residence has been evaluated. Specific PAHs and trace elements could be possibly related with heart failure development. Atmospheric degradation and smoking habit appeared to have a significant impact on the analytes' serum concentrations. PCA-logistic regression analysis could possibly reveal common mechanisms among the analytes enhancing the hypothesis that they may pose a significant risk for CVD development.


Asunto(s)
Contaminantes Atmosféricos , Insuficiencia Cardíaca/sangre , Insuficiencia Cardíaca/tratamiento farmacológico , Oligoelementos/sangre , Adulto , Anciano , Anciano de 80 o más Años , Contaminación del Aire , Monitoreo del Ambiente , Contaminantes Ambientales/análisis , Femenino , Fluorenos/sangre , Grecia , Humanos , Masculino , Persona de Mediana Edad , Fenantrenos/sangre , Proyectos Piloto , Hidrocarburos Policíclicos Aromáticos/análisis , Análisis de Componente Principal , Análisis de Regresión , Factores Sexuales , Fumar , Encuestas y Cuestionarios
4.
J Environ Sci (China) ; 99: 222-238, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33183700

RESUMEN

PM10 samples were collected from an urban/industrial site nearby Athens, where uncontrolled burning activities occur. PAHs, monocarboxylic, dicarboxylic, hydroxycarboxylic and aromatic acids, tracers from BVOC oxidation, biomass burning tracers and bisphenol A were determined. PAH, monocarboxylic acids, biomass burning tracers and bisphenol A were increased during autumn/winter, while BSOA tracers, dicarboxylic- and hydroxycarboxylic acids during summer. Regarding aromatic acids, different sources and formation mechanisms were indicated as benzoic, phthalic and trimellitic acids were peaked during summer whereas p-toluic, isophthalic and terephthalic were more abundant during autumn/winter. The Benzo[a]pyrene-equivalent carcinogenic power, carcinogenic and mutagenic activities were calculated showing significant (p < 0.05) increases during the colder months. Palmitic, succinic and malic acids were the most abundant monocarboxylic, dicarboxylic and hydrocarboxylic acids during the entire sampling period. Isoprene oxidation was the most significant contributor to BSOA as the isoprene-SOA compounds were two times more abundant than the pinene-SOA (13.4 ± 12.3 and 6.1 ± 2.9 ng/m3, respectively). Ozone has significant impact on the formation of many studied compounds showing significant correlations with: isoprene-SOA (r = 0.77), hydrocarboxylic acids (r = 0.69), pinene-SOA (r = 0.63),dicarboxylic acids (r = 0.58), and the sum of phthalic, benzoic and trimellitic acids (r = 0.44). PCA demonstrated five factors that could explain sources including plastic enriched waste burning (30.8%), oxidation of unsaturated fatty acids (23.0%), vehicle missions and cooking (9.2%), biomass burning (7.7%) and oxidation of VOCs (5.8%). The results highlight the significant contribution of plastic waste uncontrolled burning to the overall air quality degradation.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente , Material Particulado/análisis , Plásticos , Estaciones del Año
5.
Environ Sci Process Impacts ; 22(11): 2212-2229, 2020 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-32996961

RESUMEN

Fine particle samples were collected during summer at an urban (LIM) and a rural/background (AGM) site of Cyprus. They were analyzed for pinene and isoprene secondary organic aerosol (PSOA-ISOA) tracers, linear dicarboxylic acids (DCAs), hydroxyacids (HAs), aromatic acids (AAs), monocarboxylic acids (MCAs) and levoglucosan by GC/MS with prior 3-step derivatization. DCAs, AAs, MCAs and levoglucosan exhibited significantly higher concentrations (p < 0.05) in LIM, PSOAs and ISOAs in AGM (p < 0.05), whereas mixed trends were found for HAs. Among DCAs, succinic was the most abundant in both sites, accounting for 42.5% and 36.5% of the total DCAs in LIM and AGM respectively, followed by adipic in LIM (20.1%) and azelaic in AGM (22.4%). Malic, phthalic and palmitic acids were the dominant HA, AA and MCA, respectively. Regarding PSOAs, significant differences were observed between the two sites, with the first-generation products accounting for 59.8% of the total measured PSOAs in AGM, but were remarkably lowered (10.3%) in LIM indicating that they were highly oxidized. 2-Methylerythritol was the dominant ISOA tracer in both sites; nevertheless the elevated relative abundance of 2-methylglyceric acid in LIM implies the influences of higher NOx levels. The increased O3 levels observed in AGM appear to have a significant impact on SOA formation. Source apportionment tools employed revealed factors related to secondary formation processes including oxidation of unsaturated fatty acids, pinene, isoprene and anthropogenic VOCs and factors associated with primary sources such as biomass burning, plant emissions and/or cooking and motor exhaust, with noteworthy differences observed between the two areas.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Región Mediterránea , Oxidantes , Material Particulado/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA