Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Adv Mater ; : e2407116, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39148184

RESUMEN

Pressure-sensitive adhesives are widely utilized due to their instant and reversible adhesion to various dry substrates. Though offering intuitive and robust attachment of medical devices on skin, currently available clinical pressure-sensitive adhesives do not attach to internal organs, mainly due to the presence of interfacial water on the tissue surface that acts as a barrier to adhesion. In this work, a pressure-sensitive, repositionable bioadhesive (PSB) that adheres to internal organs by synergistically combining the characteristic viscoelastic properties of pressure-sensitive adhesives and the interfacial behavior of hydrogel bioadhesives, is introduced. Composed of a viscoelastic copolymer, the PSB absorbs interfacial water to enable instant adhesion on wet internal organs, such as the heart and lungs, and removal after use without causing any tissue damage. The PSB's capabilities in diverse on-demand surgical and analytical scenarios including tissue stabilization of soft organs and the integration of bioelectronic devices in rat and porcine models, are demonstrated.

2.
ACS Appl Mater Interfaces ; 16(28): 36479-36488, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-38950001

RESUMEN

Metal-organic frameworks (MOFs), with their tunable pore sizes and high surface areas, are gaining prominence in Li metal battery applications, including their use as nanofillers in solid composite electrolytes (SCEs) for enhanced ionic conductivity. Yet, when used in SCEs, individual dispersed MOF particles in isolation as nanofillers can impede efficient ion transport in all-solid-state batteries due to the insufficient supply of ionic transport pathways within SCEs. Here, we introduced a continuous SCE nanofiller with long-range assembly interconnected porous MOFs (IMOF_SCE) for effective ion transport pathway supply along the interface between the nanofiller and the polymer matrix. IMOF_SCE achieved Li-ion conductivity (6.72 × 10-5 S cm-1 at 20 °C) and Li-ion transference number (tLi+ = 0.855), resulting in the improved electrochemical performance of Li metal batteries. Additionally, the Li/LiFePO4 full cell integrated with IMOF_SCE achieved an outstanding stable capacity retention of 98.8% in 300 cycles. This work offers insights into the design strategy of effective nanofillers for SCEs and can be adapted for other porous materials.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA