Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Biol Rep ; 51(1): 814, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008163

RESUMEN

Periodontitis is a severe gum infection that begins as gingivitis and can lead to gum recession, bone loss, and tooth loss if left untreated. It is primarily caused by bacterial infection, which triggers inflammation and the formation of periodontal pockets. Notably, periodontitis is associated with systemic health issues and has been linked to heart disease, diabetes, respiratory diseases, adverse pregnancy outcomes, and cancers. Accordingly, the presence of chronic inflammation and immune system dysregulation in individuals with periodontitis significantly contributes to the initiation and progression of various cancers, particularly oral cancers. These processes promote genetic mutations, impair DNA repair mechanisms, and create a tumor-supportive environment. Moreover, the bacteria associated with periodontitis produce harmful byproducts and toxins that directly damage the DNA within oral cells, exacerbating cancer development. In addition, chronic inflammation not only stimulates cell proliferation but also inhibits apoptosis, causes DNA damage, and triggers the release of pro-inflammatory cytokines. Collectively, these factors play a crucial role in the progression of cancer in individuals affected by periodontitis. Further, specific viral and bacterial agents, such as hepatitis B and C viruses, human papillomavirus (HPV), Helicobacter pylori (H. pylori), and Porphyromonas gingivalis, contribute to cancer development through distinct mechanisms. Bacterial infections have systemic implications for cancer development, while viral infections provoke immune and inflammatory responses that can lead to genetic mutations. This review will elucidate the link between periodontitis and cancers, particularly oral cancers, exploring their underlying mechanisms to provide insights for future research and treatment advancements.


Asunto(s)
Neoplasias de la Boca , Periodontitis , Humanos , Periodontitis/complicaciones , Periodontitis/microbiología , Neoplasias de la Boca/microbiología , Neoplasias de la Boca/genética , Animales , Inflamación/complicaciones , Porphyromonas gingivalis/patogenicidad
2.
Expert Opin Biol Ther ; 22(11): 1405-1416, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36345819

RESUMEN

INTRODUCTION: Over the last two decades, an increasing body of research suggests that well-designed biomaterials can attract resident stem cells to injured areas and control their behaviors and activities to encourage tissue regeneration. Fabricated biomaterials can enhance cell recruitment, multiplication, and transformation while also acting as a delivery system for targeted cells. These capabilities might play a role in their ability to promote tooth regeneration. AREAS COVERED: This review aims to introduce the various materials used in endodontics. The potential of biomaterial-based approaches involved in cell homing for endodontics is also discussed. EXPERT OPINION: Applying the cell homing technique in restorative dentistry can affect various aspects of healthcare, industry, economy, and science. Biomaterial scaffolds can be used to encapsulate cells or for structural replacements. Also, both cell transplantation and cell homing are legitimate scientific procedures in endodontic therapy. Although the suggested biomaterials and procedures may hold promise for future dental pulp tissue regeneration, tooth structure's complexity and multicellular interconnections lead to significant problems that need to be overcome before any clinical trial.


Asunto(s)
Materiales Biocompatibles , Diente , Humanos , Ingeniería de Tejidos/métodos , Células Madre , Dentina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA