Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
mBio ; 15(4): e0045424, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38497655

RESUMEN

Salmonella serovars Typhi and Paratyphi cause a prolonged illness known as enteric fever, whereas other serovars cause acute gastroenteritis. Mechanisms responsible for the divergent clinical manifestations of nontyphoidal and enteric fever Salmonella infections have remained elusive. Here, we show that S. Typhi and S. Paratyphi A can persist within human macrophages, whereas S. Typhimurium rapidly induces apoptotic macrophage cell death that is dependent on Salmonella pathogenicity island 2 (SPI2). S. Typhi and S. Paratyphi A lack 12 specific SPI2 effectors with pro-apoptotic functions, including nine that target nuclear factor κB (NF-κB). Pharmacologic inhibition of NF-κB or heterologous expression of the SPI2 effectors GogA or GtgA restores apoptosis of S. Typhi-infected macrophages. In addition, the absence of the SPI2 effector SarA results in deficient signal transducer and activator of transcription 1 (STAT1) activation and interleukin 12 production, leading to impaired TH1 responses in macrophages and humanized mice. The absence of specific nontyphoidal SPI2 effectors may allow S. Typhi and S. Paratyphi A to cause chronic infections. IMPORTANCE: Salmonella enterica is a common cause of gastrointestinal infections worldwide. The serovars Salmonella Typhi and Salmonella Paratyphi A cause a distinctive systemic illness called enteric fever, whose pathogenesis is incompletely understood. Here, we show that enteric fever Salmonella serovars lack 12 specific virulence factors possessed by nontyphoidal Salmonella serovars, which allow the enteric fever serovars to persist within human macrophages. We propose that this fundamental difference in the interaction of Salmonella with human macrophages is responsible for the chronicity of typhoid and paratyphoid fever, suggesting that targeting the nuclear factor κB (NF-κB) complex responsible for macrophage survival could facilitate the clearance of persistent bacterial infections.


Asunto(s)
Salmonella typhi , Salmonella , Fiebre Tifoidea , Humanos , Animales , Ratones , Salmonella typhi/genética , Fiebre Tifoidea/microbiología , FN-kappa B , Macrófagos/microbiología
2.
Methods Mol Biol ; 2427: 215-234, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35619037

RESUMEN

Efforts to understand molecular mechanisms of pathogenesis of the human-restricted pathogen Salmonella enterica serovar Typhi, the causative agent of typhoid fever, have been hampered by the lack of a tractable small animal model. This obstacle has been surmounted by a humanized mouse model in which genetically modified mice are engrafted with purified CD34+ stem cells from human umbilical cord blood, designated CD34+ Hu-NSG (formerly hu-SRC-SCID) mice. We have shown that these mice develop a lethal systemic infection with S. Typhi that is dependent on the presence of engrafted human hematopoietic cells. Immunological and pathological features of human typhoid are recapitulated in this model, which has been successfully employed for the identification of bacterial genetic determinants of S. Typhi virulence. Here we describe the methods used to infect CD34+ Hu-NSG mice with S. Typhi in humanized mice and to construct and analyze a transposon-directed insertion site sequencing S. Typhi library, and provide general considerations for the use of humanized mice for the study of a human-restricted pathogen.


Asunto(s)
Salmonella typhi , Fiebre Tifoidea , Animales , Modelos Animales de Enfermedad , Ratones , Ratones SCID , Salmonella typhi/genética , Fiebre Tifoidea/microbiología , Fiebre Tifoidea/patología , Virulencia/genética
3.
Infect Immun ; 90(1): e0047921, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-34662213

RESUMEN

A variety of eubacteria, plants, and protozoa can modify membrane lipids by cyclopropanation, which is reported to modulate membrane permeability and fluidity. The ability to cyclopropanate membrane lipids has been associated with resistance to oxidative stress in Mycobacterium tuberculosis, organic solvent stress in Escherichia coli, and acid stress in E. coli and Salmonella. In bacteria, the cfa gene encoding cyclopropane fatty acid (CFA) synthase is induced during the stationary phase of growth. In the present study, we constructed a cfa mutant of Salmonella enterica serovar Typhimurium 14028s (S. Typhimurium) and determined the contribution of CFA-modified lipids to stress resistance and virulence in mice. Cyclopropane fatty acid content was quantified in wild-type and cfa mutant S. Typhimurium. CFA levels in the cfa mutant were greatly reduced compared to CFA levels in the wild type, indicating that CFA synthase is the major enzyme responsible for cyclopropane modification of lipids in Salmonella. S. Typhimurium cfa mutants were more sensitive to extreme acid pH, the protonophore CCCP, and hydrogen peroxide compared to the wild type. In addition, cfa mutants exhibited reduced viability in murine macrophages and could be rescued by the addition of the NADPH phagocyte oxidase inhibitor diphenyleneiodonium (DPI) chloride. S. Typhimurium lacking cfa was also attenuated for virulence in mice. These observations indicate that CFA modification of lipids makes an important contribution to Salmonella virulence.


Asunto(s)
Ciclopropanos/metabolismo , Ácidos Grasos/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/fisiología , Animales , Fenómenos Fisiológicos Bacterianos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Ciclopropanos/química , Ciclopropanos/farmacología , Modelos Animales de Enfermedad , Ácidos Grasos/química , Ácidos Grasos/farmacología , Concentración de Iones de Hidrógeno , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Viabilidad Microbiana/efectos de los fármacos , Viabilidad Microbiana/inmunología , Mutación , Estrés Oxidativo , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/mortalidad , Salmonella typhimurium/efectos de los fármacos , Virulencia
4.
Metallomics ; 12(11): 1791-1801, 2020 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-33078811

RESUMEN

Nitric oxide (NO˙) is a radical molecule produced by mammalian phagocytic cells as part of the innate immune response to bacterial pathogens. It exerts its antimicrobial activity in part by impairing the function of metalloproteins, particularly those containing iron and zinc cofactors. The pathogenic Gram-negative bacterium Salmonella enterica serovar typhimurium undergoes dynamic changes in its cellular content of the four most common metal cofactors following exposure to NO˙ stress. Zinc, iron and magnesium all decrease in response to NO˙ while cellular manganese increases significantly. Manganese acquisition is driven primarily by increased expression of the mntH and sitABCD transporters following derepression of MntR and Fur. ZupT also contributes to manganese acquisition in response to nitrosative stress. S. Typhimurium mutants lacking manganese importers are more sensitive to NO˙, indicating that manganese is important for resistance to nitrosative stress.


Asunto(s)
Manganeso/metabolismo , Estrés Nitrosativo , Salmonella typhimurium/metabolismo , Proteínas Bacterianas/metabolismo , Transporte Biológico , Proteínas de Transporte de Catión/metabolismo , Recuento de Colonia Microbiana , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Magnesio/metabolismo , Viabilidad Microbiana , Mutación/genética , Óxido Nítrico/metabolismo , Salmonella typhimurium/genética , Regulación hacia Arriba/genética
5.
Bioorg Med Chem Lett ; 30(2): 126875, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31836438

RESUMEN

A library of novel l-propargylglycine-based compounds were designed and synthesized with the goal of inhibiting the growth of Gram-negative bacteria by targeting LpxC, a highly conserved Gram-negative enzyme which performs an essential step in the lipid A biosynthetic pathway. These compounds were designed with and without a nucleoside and had varying tail structures, which modulate their lipophilicity. The synthetic scheme was improved compared to previous methods: a methyl ester intermediate was converted to a hydroxamic acid, which obviated the need for a THP protecting group and improved the yields and purity of the final compounds. Antimicrobial activity was observed for non-nucleoside compounds containing a phenyl propargyl ether tail (5) or a biphenyl tail (6). An MIC of 16 µg/mL was achieved for 6 in Escherichia coli, but inhibition was only possible in the absence of TolC-mediated efflux. Compound 5 had an initial MIC >160 µg/mL in E. coli. Enhancing outer membrane permeability or eliminating efflux reduced the MIC modestly to 100 µg/mL and 80 µg/mL, respectively. These results highlight the importance of hydrophobicity of this class of compounds in developing LpxC inhibitors, as well as the design challenge of avoiding multidrug efflux activity.


Asunto(s)
Alquinos/uso terapéutico , Antibacterianos/uso terapéutico , Antiinfecciosos/uso terapéutico , Escherichia coli/patogenicidad , Glicina/análogos & derivados , Alquinos/farmacología , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Glicina/farmacología , Glicina/uso terapéutico , Humanos
6.
Cell Host Microbe ; 26(3): 426-434.e6, 2019 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-31447308

RESUMEN

Salmonella enterica serovar Typhi causes typhoid fever only in humans. Murine infection with S. Typhimurium is used as a typhoid model, but its relevance to human typhoid is limited. Non-obese diabetic-scid IL2rγnull mice engrafted with human hematopoietic stem cells (hu-SRC-SCID) are susceptible to lethal S. Typhi infection. In this study, we use a high-density S. Typhi transposon library in hu-SRC-SCID mice to identify virulence loci using transposon-directed insertion site sequencing (TraDIS). Vi capsule, lipopolysaccharide (LPS), and aromatic amino acid biosynthesis were essential for virulence, along with the siderophore salmochelin. However, in contrast to the murine S. Typhimurium model, neither the PhoPQ two-component system nor the SPI-2 pathogenicity island was required for lethal S. Typhi infection, nor was the CdtB typhoid toxin. These observations highlight major differences in the pathogenesis of typhoid and non-typhoidal Salmonella infections and demonstrate the utility of humanized mice for understanding the pathogenesis of a human-specific pathogen.


Asunto(s)
Estudio de Asociación del Genoma Completo/métodos , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhi/genética , Salmonella typhi/patogenicidad , Aminoácidos Aromáticos/biosíntesis , Animales , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Proteína Quinasa Activada por ADN/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Islas Genómicas/genética , Humanos , Subunidad gamma Común de Receptores de Interleucina/genética , Hierro/metabolismo , Lipopolisacáridos/metabolismo , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos NOD , Ratones Obesos , Ratones SCID , Salmonella typhi/crecimiento & desarrollo , Sideróforos/metabolismo , Células THP-1/microbiología , Fiebre Tifoidea , Virulencia/genética
7.
mBio ; 10(2)2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837332

RESUMEN

Gene duplication and subsequent evolutionary divergence have allowed conserved proteins to develop unique roles. The MarR family of transcription factors (TFs) has undergone extensive duplication and diversification in bacteria, where they act as environmentally responsive repressors of genes encoding efflux pumps that confer resistance to xenobiotics, including many antimicrobial agents. We have performed structural, functional, and genetic analyses of representative members of the SlyA/RovA lineage of MarR TFs, which retain some ancestral functions, including repression of their own expression and that of divergently transcribed multidrug efflux pumps, as well as allosteric inhibition by aromatic carboxylate compounds. However, SlyA and RovA have acquired the ability to countersilence horizontally acquired genes, which has greatly facilitated the evolution of Enterobacteriaceae by horizontal gene transfer. SlyA/RovA TFs in different species have independently evolved novel regulatory circuits to provide the enhanced levels of expression required for their new role. Moreover, in contrast to MarR, SlyA is not responsive to copper. These observations demonstrate the ability of TFs to acquire new functions as a result of evolutionary divergence of both cis-regulatory sequences and in trans interactions with modulatory ligands.IMPORTANCE Bacteria primarily evolve via horizontal gene transfer, acquiring new traits such as virulence and antibiotic resistance in single transfer events. However, newly acquired genes must be integrated into existing regulatory networks to allow appropriate expression in new hosts. This is accommodated in part by the opposing mechanisms of xenogeneic silencing and countersilencing. An understanding of these mechanisms is necessary to understand the relationship between gene regulation and bacterial evolution. Here we examine the functional evolution of an important lineage of countersilencers belonging to the ancient MarR family of classical transcriptional repressors. We show that although members of the SlyA lineage retain some ancestral features associated with the MarR family, their cis-regulatory sequences have evolved significantly to support their new function. Understanding the mechanistic requirements for countersilencing is critical to understanding the pathoadaptation of emerging pathogens and also has practical applications in synthetic biology.


Asunto(s)
Enterobacteriaceae/genética , Evolución Molecular , Regulación Bacteriana de la Expresión Génica , Silenciador del Gen , Factores de Transcripción/genética , Transferencia de Gen Horizontal
8.
mBio ; 10(1)2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30723125

RESUMEN

We have recently shown that the catecholamine dopamine regulates cellular iron homeostasis in macrophages. As iron is an essential nutrient for microbes, and intracellular iron availability affects the growth of intracellular bacteria, we studied whether dopamine administration impacts the course of Salmonella infections. Dopamine was found to promote the growth of Salmonella both in culture and within bone marrow-derived macrophages, which was dependent on increased bacterial iron acquisition. Dopamine administration to mice infected with Salmonella enterica serovar Typhimurium resulted in significantly increased bacterial burdens in liver and spleen, as well as reduced survival. The promotion of bacterial growth by dopamine was independent of the siderophore-binding host peptide lipocalin-2. Rather, dopamine enhancement of iron uptake requires both the histidine sensor kinase QseC and bacterial iron transporters, in particular SitABCD, and may also involve the increased expression of bacterial iron uptake genes. Deletion or pharmacological blockade of QseC reduced but did not abolish the growth-promoting effects of dopamine. Dopamine also modulated systemic iron homeostasis by increasing hepcidin expression and depleting macrophages of the iron exporter ferroportin, which enhanced intracellular bacterial growth. Salmonella lacking all central iron uptake pathways failed to benefit from dopamine treatment. These observations are potentially relevant to critically ill patients, in whom the pharmacological administration of catecholamines to improve circulatory performance may exacerbate the course of infection with siderophilic bacteria.IMPORTANCE Here we show that dopamine increases bacterial iron incorporation and promotes Salmonella Typhimurium growth both in vitro and in vivo These observations suggest the potential hazards of pharmacological catecholamine administration in patients with bacterial sepsis but also suggest that the inhibition of bacterial iron acquisition might provide a useful approach to antimicrobial therapy.


Asunto(s)
Quelantes/metabolismo , Dopamina/metabolismo , Hierro/metabolismo , Infecciones por Salmonella/patología , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/crecimiento & desarrollo , Sideróforos/metabolismo , Animales , Carga Bacteriana , Células Cultivadas , Quelantes/administración & dosificación , Modelos Animales de Enfermedad , Dopamina/administración & dosificación , Hígado/microbiología , Macrófagos/microbiología , Ratones Endogámicos C57BL , Sideróforos/administración & dosificación , Bazo/microbiología , Análisis de Supervivencia , Virulencia/efectos de los fármacos
9.
mBio ; 9(4)2018 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-30108168

RESUMEN

Nitric oxide (NO·) produced by mammalian cells exerts antimicrobial actions that result primarily from the modification of protein thiols (S-nitrosylation) and metal centers. A comprehensive approach was used to identify novel targets of NO· in Salmonella enterica serovar Typhimurium (S. Typhimurium). Newly identified targets include zinc metalloproteins required for DNA replication and repair (DnaG, PriA, and TopA), protein synthesis (AlaS and RpmE), and various metabolic activities (ClpX, GloB, MetE, PepA, and QueC). The cytotoxic actions of free zinc are mitigated by the ZntA and ZitB zinc efflux transporters, which are required for S. Typhimurium resistance to zinc overload and nitrosative stress in vitro Zinc efflux also ameliorates NO·-dependent zinc mobilization following internalization by activated macrophages and is required for virulence in NO·-producing mice, demonstrating that host-derived NO· causes zinc stress in intracellular bacteria.IMPORTANCE Nitric oxide (NO·) is produced by macrophages in response to inflammatory stimuli and restricts the growth of intracellular bacteria. Mechanisms of NO·-dependent antimicrobial actions are incompletely understood. Here, we show that zinc metalloproteins are important targets of NO· in Salmonella, including the DNA replication proteins DnaG and PriA, which were hypothesized to be NO· targets in earlier studies. Like iron, zinc is a cofactor for several essential proteins but is toxic at elevated concentrations. This study demonstrates that NO· mobilizes free zinc in Salmonella and that specific efflux transporters ameliorate the cytotoxic effects of free zinc during infection.


Asunto(s)
Antibacterianos/metabolismo , Homeostasis/efectos de los fármacos , Óxido Nítrico/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/metabolismo , Zinc/metabolismo , Zinc/toxicidad , Animales , Macrófagos/inmunología , Ratones , Viabilidad Microbiana , Células RAW 264.7 , Salmonelosis Animal/inmunología
10.
Cell Host Microbe ; 23(5): 594-606.e7, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29706505

RESUMEN

Staphylococcus aureus is a commensal bacterium that can asymptomatically colonize its host but also causes invasive infections. Quorum sensing regulates S. aureus virulence and the transition from a commensal to a pathogenic organism. However, little is known about how host innate immunity affects interbacterial communication. We show that nitric oxide suppresses staphylococcal virulence by targeting the Agr quorum sensing system. Nitric oxide-mediated inhibition occurs through direct modification of cysteine residues C55, C123, and C199 of the AgrA transcription factor. Cysteine modification decreases AgrA promoter occupancy as well as transcription of the agr operon and quorum sensing-activated toxin genes. In a staphylococcal pneumonia model, mice lacking inducible nitric oxide synthase develop more severe disease with heightened mortality and proinflammatory cytokine responses. In addition, staphylococcal α-toxin production increases in the absence of nitric oxide or nitric oxide-sensitive AgrA cysteine residues. Our findings demonstrate an anti-virulence mechanism for nitric oxide in innate immunity.


Asunto(s)
Comunicación Celular/inmunología , Comunicación Celular/fisiología , Interacciones Huésped-Patógeno/inmunología , Interacciones Huésped-Patógeno/fisiología , Óxido Nítrico/antagonistas & inhibidores , Staphylococcus/efectos de los fármacos , Staphylococcus/patogenicidad , Animales , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Cisteína , Citocinas/metabolismo , Femenino , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Proteínas Hemolisinas/metabolismo , Inmunidad Innata , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo II/genética , Operón , Neumonía Estafilocócica/metabolismo , Neumonía Estafilocócica/patología , Regiones Promotoras Genéticas/efectos de los fármacos , Percepción de Quorum/efectos de los fármacos , Percepción de Quorum/genética , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/patogenicidad , Transactivadores/metabolismo , Factores de Transcripción/efectos de los fármacos , Virulencia/efectos de los fármacos
11.
mBio ; 8(3)2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28588134

RESUMEN

The Rcs phosphorelay and Psp (phage shock protein) systems are envelope stress responses that are highly conserved in gammaproteobacteria. The Rcs regulon was found to be strongly induced during metal deprivation of Salmonella enterica serovar Typhimurium lacking the Psp response. Nineteen genes activated by the RcsA-RcsB response regulator make up an operon responsible for the production of colanic acid capsular polysaccharide, which promotes biofilm development. Despite more than half a century of research, the physiological function of colanic acid has remained elusive. Here we show that Rcs-dependent colanic acid production maintains the transmembrane electrical potential and proton motive force in cooperation with the Psp response. Production of negatively charged exopolysaccharide covalently bound to the outer membrane may enhance the surface potential by increasing the local proton concentration. This provides a unifying mechanism to account for diverse Rcs/colanic acid-related phenotypes, including susceptibility to membrane-damaging agents and biofilm formation.IMPORTANCE Colanic acid is a negatively charged polysaccharide capsule produced by Escherichia coli, Salmonella, and other gammaproteobacteria. Research conducted over the 50 years since the discovery of colanic acid suggests that this exopolysaccharide plays an important role for bacteria living in biofilms. However, a precise physiological role for colanic acid has not been defined. In this study, we provide evidence that colanic acid maintains the transmembrane potential and proton motive force during envelope stress. This work provides a new and fundamental insight into bacterial physiology.


Asunto(s)
Cápsulas Bacterianas/fisiología , Proteínas Bacterianas/genética , Proteínas de Choque Térmico/genética , Potenciales de la Membrana , Polisacáridos Bacterianos/metabolismo , Polisacáridos/metabolismo , Salmonella typhimurium/fisiología , Proteínas Bacterianas/metabolismo , Biopelículas , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/metabolismo , Polisacáridos/biosíntesis , Polisacáridos/genética , Polisacáridos Bacterianos/química , Fuerza Protón-Motriz , Salmonella typhimurium/genética
12.
mBio ; 7(2): e02265, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26933058

RESUMEN

UNLABELLED: Nontyphoidal Salmonella enterica serovar Typhimurium is a frequent cause of bloodstream infections in children and HIV-infected adults in sub-Saharan Africa. Most isolates from African patients with bacteremia belong to a single sequence type, ST313, which is genetically distinct from gastroenteritis-associated ST19 strains, such as 14028s and SL1344. Some studies suggest that the rapid spread of ST313 across sub-Saharan Africa has been facilitated by anthroponotic (person-to-person) transmission, eliminating the need for Salmonella survival outside the host. While these studies have not ruled out zoonotic or other means of transmission, the anthroponotic hypothesis is supported by evidence of extensive genomic decay, a hallmark of host adaptation, in the sequenced ST313 strain D23580. We have identified and demonstrated 2 loss-of-function mutations in D23580, not present in the ST19 strain 14028s, that impair multicellular stress resistance associated with survival outside the host. These mutations result in inactivation of the KatE stationary-phase catalase that protects high-density bacterial communities from oxidative stress and the BcsG cellulose biosynthetic enzyme required for the RDAR (red, dry, and rough) colonial phenotype. However, we found that like 14028s, D23580 is able to elicit an acute inflammatory response and cause enteritis in mice and rhesus macaque monkeys. Collectively, these observations suggest that African S. Typhimurium ST313 strain D23580 is becoming adapted to an anthroponotic mode of transmission while retaining the ability to infect and cause enteritis in multiple host species. IMPORTANCE: The last 3 decades have witnessed an epidemic of invasive nontyphoidal Salmonella infections in sub-Saharan Africa. Genomic analysis and clinical observations suggest that the Salmonella strains responsible for these infections are evolving to become more typhoid-like with regard to patterns of transmission and virulence. This study shows that a prototypical African nontyphoidal Salmonella strain has lost traits required for environmental stress resistance, consistent with an adaptation to a human-to-human mode of transmission. However, in contrast to predictions, the strain remains capable of causing acute inflammation in the mammalian intestine. This suggests that the systemic clinical presentation of invasive nontyphoidal Salmonella infections in Africa reflects the immune status of infected hosts rather than intrinsic differences in the virulence of African Salmonella strains. Our study provides important new insights into the evolution of host adaptation in bacterial pathogens.


Asunto(s)
Adaptación Biológica , Infecciones por Salmonella/microbiología , Salmonella typhimurium/enzimología , Salmonella typhimurium/fisiología , Estrés Fisiológico , África del Sur del Sahara/epidemiología , Animales , Catalasa/genética , Catalasa/metabolismo , Modelos Animales de Enfermedad , Epidemias , Glucosiltransferasas/genética , Glucosiltransferasas/metabolismo , Humanos , Macaca mulatta , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Infecciones por Salmonella/epidemiología , Salmonella typhimurium/genética , Salmonella typhimurium/aislamiento & purificación
13.
Infect Immun ; 82(4): 1390-401, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24421039

RESUMEN

Labile [4Fe-4S](2+) clusters found at the active sites of many dehydratases are susceptible to damage by univalent oxidants that convert the clusters to an inactive [3Fe-4S](1+) form. Bacteria repair damaged clusters in a process that does not require de novo protein synthesis or the Isc and Suf cluster assembly pathways. The current study investigates the participation of the bacterial frataxin ortholog CyaY and the YggX protein, which are proposed to play roles in iron trafficking and iron-sulfur cluster repair. Previous reports found that individual mutations in cyaY or yggX were not associated with phenotypic changes in Escherichia coli and Salmonella enterica serovar Typhimurium, suggesting that CyaY and YggX might have functionally redundant roles. However, we have found that individual mutations in cyaY or yggX confer enhanced susceptibility to hydrogen peroxide in Salmonella enterica serovar Typhimurium. In addition, inactivation of the stm3944 open reading frame, which is located immediately upstream of cyaY and which encodes a putative inner membrane protein, dramatically enhances the hydrogen peroxide sensitivity of a cyaY mutant. Overexpression of STM3944 reduces the elevated intracellular free iron levels observed in an S. Typhimurium fur mutant and also reduces the total cellular iron content under conditions of iron overload, suggesting that the stm3944-encoded protein may mediate iron efflux. Mutations in cyaY and yggX have different effects on the activities of the iron-sulfur cluster-containing aconitase, serine deaminase, and NADH dehydrogenase I enzymes of S. Typhimurium under basal conditions or following recovery from oxidative stress. In addition, cyaY and yggX mutations have additive effects on 6-phosphogluconate dehydratase-dependent growth during nitrosative stress, and a cyaY mutation reduces Salmonella virulence in mice. Collectively, these results indicate that CyaY and YggX play distinct supporting roles in iron-sulfur cluster biosynthesis and the repair of labile clusters damaged by univalent oxidants. Salmonella experiences oxidative and nitrosative stress within host phagocytes, and CyaY-dependent maintenance of labile iron-sulfur clusters appears to be important for Salmonella virulence.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas Hierro-Azufre/química , Salmonella typhi/fisiología , Fiebre Tifoidea/microbiología , Aconitato Hidratasa/metabolismo , Animales , Proteínas Bacterianas/genética , Liasas de Carbono-Azufre/química , Catalasa/metabolismo , Proliferación Celular , Espectroscopía de Resonancia por Spin del Electrón , Femenino , Peróxido de Hidrógeno/farmacología , Hierro/química , Ratones , Ratones Endogámicos C3H , Modelos Químicos , Mutación , NAD/metabolismo , Óxido Nítrico/farmacología , Estrés Oxidativo/fisiología , Oxígeno/metabolismo , Plásmidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Salmonella typhi/efectos de los fármacos , Salmonella typhi/metabolismo , Salmonella typhi/patogenicidad , Azufre/química , Virulencia
14.
Mol Microbiol ; 85(6): 1179-93, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22831173

RESUMEN

Nitric oxide (NO·) is an important mediator of innate immunity. The facultative intracellular pathogen Salmonella has evolved mechanisms to detoxify and evade the antimicrobial actions of host-derived NO· produced during infection. Expression of the NO·-detoxifying flavohaemoglobin Hmp is controlled by the NO·-sensing transcriptional repressor NsrR and is required for Salmonella virulence. In this study we show that NsrR responds to very low NO· concentrations, suggesting that it plays a primary role in the nitrosative stress response. Additionally, we have defined the NsrR regulon in Salmonella enterica sv. Typhimurium 14028s using transcriptional microarray, qRT-PCR and in silico methods. A novel NsrR-regulated gene designated STM1808 has been identified, along with hmp, hcp-hcr, yeaR-yoaG, ygbA and ytfE. STM1808 and ygbA are important for S. Typhimurium growth during nitrosative stress, and the hcp-hcr locus plays a supportive role in NO· detoxification. ICP-MS analysis of purified STM1808 suggests that it is a zinc metalloprotein, with histidine residues H32 and H82 required for NO· resistance and zinc binding. Moreover, STM1808 and ytfE promote Salmonella growth during systemic infection of mice. Collectively, these findings demonstrate that NsrR-regulated genes in addition to hmp are important for NO· detoxification, nitrosative stress resistance and Salmonella virulence.


Asunto(s)
Farmacorresistencia Bacteriana , Óxido Nítrico/toxicidad , Regulón , Proteínas Represoras/metabolismo , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Animales , Ratones , Análisis por Micromatrices , Reacción en Cadena en Tiempo Real de la Polimerasa , Estrés Fisiológico , Transcriptoma , Factores de Virulencia/metabolismo
15.
PLoS Pathog ; 8(6): e1002733, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22685400

RESUMEN

Whereas the majority of pathogenic Salmonella serovars are capable of infecting many different animal species, typically producing a self-limited gastroenteritis, serovars with narrow host-specificity exhibit increased virulence and their infections frequently result in fatal systemic diseases. In our study, a genetic and functional analysis of the mannose-specific type 1 fimbrial adhesin FimH from a variety of serovars of Salmonella enterica revealed that specific mutant variants of FimH are common in host-adapted (systemically invasive) serovars. We have found that while the low-binding shear-dependent phenotype of the adhesin is preserved in broad host-range (usually systemically non-invasive) Salmonella, the majority of host-adapted serovars express FimH variants with one of two alternative phenotypes: a significantly increased binding to mannose (as in S. Typhi, S. Paratyphi C, S. Dublin and some isolates of S. Choleraesuis), or complete loss of the mannose-binding activity (as in S. Paratyphi B, S. Choleraesuis and S. Gallinarum). The functional diversification of FimH in host-adapted Salmonella results from recently acquired structural mutations. Many of the mutations are of a convergent nature indicative of strong positive selection. The high-binding phenotype of FimH that leads to increased bacterial adhesiveness to and invasiveness of epithelial cells and macrophages usually precedes acquisition of the non-binding phenotype. Collectively these observations suggest that activation or inactivation of mannose-specific adhesive properties in different systemically invasive serovars of Salmonella reflects their dynamic trajectories of adaptation to a life style in specific hosts. In conclusion, our study demonstrates that point mutations are the target of positive selection and, in addition to horizontal gene transfer and genome degradation events, can contribute to the differential pathoadaptive evolution of Salmonella.


Asunto(s)
Adhesinas Bacterianas/genética , Filogenia , Mutación Puntual , Infecciones por Salmonella/genética , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Evolución Biológica , Técnicas de Inactivación de Genes , Humanos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Virulencia/genética
16.
Cell Host Microbe ; 10(1): 33-43, 2011 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-21767810

RESUMEN

Host nitric oxide (NO⋅) production is important for controlling intracellular bacterial pathogens, including Salmonella enterica serovar Typhimurium, but the underlying mechanisms are incompletely understood. S. Typhmurium 14028s is prototrophic for all amino acids but cannot synthesize methionine (M) or lysine (K) during nitrosative stress. Here, we show that NO⋅-induced MK auxotrophy results from reduced succinyl-CoA availability as a consequence of NO⋅ targeting of lipoamide-dependent lipoamide dehydrogenase (LpdA) activity. LpdA is an essential component of the pyruvate and α-ketoglutarate dehydrogenase complexes. Additional effects of NO⋅ on gene regulation prevent compensatory pathways of succinyl-CoA production. Microarray analysis indicates that over 50% of the transcriptional response of S. Typhimurium to nitrosative stress is attributable to LpdA inhibition. Bacterial methionine transport is essential for virulence in NO⋅-producing mice, demonstrating that NO⋅-induced MK auxotrophy occurs in vivo. These observations underscore the importance of metabolic targets for antimicrobial actions of NO⋅.


Asunto(s)
Ciclo del Ácido Cítrico , Óxido Nítrico/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Acilcoenzima A/metabolismo , Animales , Transporte Biológico , Medios de Cultivo , Dihidrolipoamida Deshidrogenasa/metabolismo , Femenino , Regulación Bacteriana de la Expresión Génica , Interacciones Huésped-Patógeno , Complejo Cetoglutarato Deshidrogenasa/metabolismo , Lisina/metabolismo , Lisina/farmacología , Metionina/metabolismo , Metionina/farmacología , Ratones , Ratones Endogámicos C3H , Óxido Nítrico/farmacología , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/efectos de los fármacos , Estrés Fisiológico , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
17.
Mol Microbiol ; 78(3): 669-85, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20807201

RESUMEN

The phage shock protein (Psp) system is induced by extracytoplasmic stress and thought to be important for the maintenance of proton motive force. We investigated the contribution of PspA to Salmonella virulence. A pspA deletion mutation significantly attenuates the virulence of Salmonella enterica serovar Typhimurium following intraperitoneal inoculation of C3H/HeN (Ity(r) ) mice. PspA was found to be specifically required for virulence in mice expressing the natural resistance-associated macrophage protein 1 (Nramp1) (Slc11a1) divalent metal transporter, which restricts microbial growth by limiting the availability of essential divalent metals within the phagosome. Salmonella competes with Nramp1 by expressing multiple metal uptake systems including the Nramp-homologue MntH, the ABC transporter SitABCD and the ZIP family transporter ZupT. PspA was found to facilitate Mn(2+) transport by MntH and SitABCD, as well as Zn(2+) and Mn(2+) transport by ZupT. In vitro uptake of (54) Mn(2+) by MntH and ZupT was reduced in the absence of PspA. Transport-deficient mutants exhibit reduced viability in the absence of PspA when grown under metal-limited conditions. Moreover, the ZupT transporter is required for Salmonella enterica serovar Typhimurium virulence in Nramp1-expressing mice. We propose that PspA promotes Salmonella virulence by maintaining proton motive force, which is required for the function of multiple transporters mediating bacterial divalent metal acquisition during infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Choque Térmico/metabolismo , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Animales , Proteínas Bacterianas/genética , Transporte Biológico , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/genética , Hierro/metabolismo , Manganeso/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Infecciones por Salmonella/genética , Infecciones por Salmonella/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Virulencia , Zinc/metabolismo
18.
Proc Natl Acad Sci U S A ; 107(35): 15589-94, 2010 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-20713716

RESUMEN

Salmonella enterica serovar Typhi, the cause of typhoid fever, is host-adapted to humans and unable to cause disease in mice. Here, we show that S. Typhi can replicate in vivo in nonobese diabetic (NOD)-scid IL2rgamma(null) mice engrafted with human hematopoietic stem cells (hu-SRC-SCID mice) to cause a lethal infection with pathological and inflammatory cytokine responses resembling human typhoid. In contrast, S. Typhi does not exhibit net replication or cause illness in nonengrafted or immunocompetent control animals. Screening of transposon pools in hu-SRC-SCID mice revealed both known and previously unknown Salmonella virulence determinants, including Salmonella Pathogenicity Islands 1, 2, 3, 4, and 6. Our observations indicate that the presence of human immune cells allows the in vivo replication of S. Typhi in mice. The hu-SRC-SCID mouse provides an unprecedented opportunity to gain insights into S. Typhi pathogenesis and devise strategies for the prevention of typhoid fever.


Asunto(s)
Citocinas/metabolismo , Subunidad gamma Común de Receptores de Interleucina/metabolismo , Salmonella typhi/patogenicidad , Fiebre Tifoidea/patología , Animales , Animales Recién Nacidos , Femenino , Citometría de Flujo , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Humanos , Interferón gamma/metabolismo , Subunidad gamma Común de Receptores de Interleucina/genética , Antígenos Comunes de Leucocito/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Salmonella typhi/genética , Factor de Necrosis Tumoral alfa/metabolismo , Fiebre Tifoidea/genética , Fiebre Tifoidea/metabolismo , Virulencia/genética
19.
Mol Microbiol ; 67(5): 971-83, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18194158

RESUMEN

In response to iron deprivation, Salmonella enterica serovar Typhimurium secretes two catecholate-type siderophores, enterobactin and its glucosylated derivative salmochelin. Although the systems responsible for enterobactin synthesis and acquisition are well characterized, the mechanisms of salmochelin secretion and acquisition, as well as its role in Salmonella virulence, are incompletely understood. Herein we show by liquid chromatography-mass spectrometry analysis of culture supernatants from wild type and isogenic mutant bacterial strains that the Major Facilitator Superfamily pump EntS is the major exporter of enterobactin and the ABC transporter IroC exports both salmochelin and enterobactin. Growth promotion experiments demonstrate that IroC is not required for utilization of Fe-enterobactin or Fe-salmochelin, as had been previously suggested, but the ABC transporter protein FepD is required for utilization of both siderophores. Salmonella mutants deficient in salmochelin synthesis or secretion exhibit reduced virulence during systemic infection of mice.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Proteínas Bacterianas/metabolismo , Enterobactina/metabolismo , Hierro/metabolismo , Salmonelosis Animal/microbiología , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Sideróforos/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Animales , Proteínas Bacterianas/genética , Transporte Biológico , Cromatografía Liquida , Enterobactina/análogos & derivados , Enterobactina/análisis , Enterobactina/genética , Espectrometría de Masas , Proteínas de la Membrana/metabolismo , Ratones , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Eliminación de Secuencia , Sideróforos/análisis , Sideróforos/genética , Virulencia
20.
Genes Dev ; 21(18): 2326-35, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17761814

RESUMEN

The rod component of the bacterial flagellum polymerizes from the inner membrane across the periplasmic space and stops at a length of 25 nm at the outer membrane. Bushing structures, the P- and L-rings, polymerize around the distal rod and form a pore in the outer membrane. The flagellar hook structure is then added to the distal rod growing outside the cell. Hook polymerization stops after the rod-hook structure reaches approximately 80 nm in length. This study describes mutants in the distal rod protein FlgG that fail to terminate rod growth. The mutant FlgG subunits continue to polymerize close to the length of the normal rod-hook structure of 80 nm. These filamentous rod structures have multiple P-rings and fail to form the L-ring pore at the outer membrane. The flagella grow within the periplasm similar to spirochete flagella. This provides a simple method to evolve intracellular flagella as in spirochetes. The mechanism that couples rod growth termination to the ring assembly and outer membrane penetration exemplifies the importance of stopping points in the construction of a complex macromolecular machine that facilitate efficient coupling to the next step in the assembly pathway.


Asunto(s)
Evolución Biológica , Membrana Celular/metabolismo , Flagelos/metabolismo , Spirochaetales/fisiología , Secuencia de Aminoácidos , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , Flagelos/química , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Periplasma/metabolismo , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA