Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 3877, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38366099

RESUMEN

Knowing about the antibiotic resistance, serotypes, and virulence-associated genes of Group B Streptococcus for epidemiological and vaccine development is very important. We have determined antimicrobial susceptibility patterns, serotype, and virulence profiles. The antibiotic susceptibility was assessed for a total of 421 Streptococcus agalactiae strains, isolated from pregnant women and neonates. Then, 89 erythromycin and/or clindamycin-resistant strains (82 isolates obtained from pregnant women and seven isolates derived from neonates) were assessed in detail. PCR techniques were used to identify the studied strains, perform serotyping, and assess genes encoding selected virulence factors. Phenotypic and genotypic methods determined the mechanisms of resistance. All tested strains were sensitive to penicillin and levofloxacin. The constitutive MLSB mechanism (78.2%), inducible MLSB mechanism (14.9%), and M phenotype (6.9%) were identified in the macrolide-resistant strains. It was found that macrolide resistance is strongly associated with the presence of the ermB gene and serotype V. FbsA, fbsB, fbsC, scpB, and lmb formed the most recurring pattern of genes among the nine surface proteins whose genes were analysed. A minority (7.9%) of the GBS isolates exhibited resistance to lincosamides and macrolides, or either, including those that comprised the hypervirulent clone ST-17. The representative antibiotic resistance pattern consisted of erythromycin, clindamycin, and tetracycline resistance (71.9%). An increase in the fraction of strains resistant to macrolides and lincosamides indicates the need for monitoring both the susceptibility of these strains and the presence of the ST-17 clone.


Asunto(s)
Antibacterianos , Infecciones Estreptocócicas , Recién Nacido , Femenino , Humanos , Embarazo , Antibacterianos/farmacología , Macrólidos/farmacología , Streptococcus agalactiae , Clindamicina/farmacología , Mujeres Embarazadas , Polonia/epidemiología , Infecciones Estreptocócicas/tratamiento farmacológico , Infecciones Estreptocócicas/epidemiología , Farmacorresistencia Bacteriana/genética , Pruebas de Sensibilidad Microbiana , Lincosamidas/farmacología , Eritromicina/farmacología
2.
Clin Genet ; 105(2): 190-195, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37821225

RESUMEN

Congenital alveolar dysplasia (CAD) belongs to rare lethal lung developmental disorders (LLDDs) in neonates, manifesting with acute respiratory failure and pulmonary arterial hypertension refractory to treatment. The majority of CAD cases have been associated with copy-number variant (CNV) deletions at 17q23.1q23.2 or 5p12. Most CNV deletions at 17q23.1q23.2 were recurrent and encompassed two closely located genes, TBX4 and TBX2. In a few CAD cases, intragenic frameshifting deletions or single-nucleotide variants (SNVs) involved TBX4 but not TBX2. Here, we describe a male neonate who died at 27 days of life from acute respiratory failure caused by lung growth arrest along the spectrum of CAD confirmed by histopathological assessment. Trio-based genome sequencing revealed in the proband a novel non-recurrent ~1.07 Mb heterozygous CNV deletion at 17q23.2, encompassing TBX4 that arose de novo on the paternal chromosome. This is the first report of a larger-sized CNV deletion in a CAD patient involving TBX4 and leaving TBX2 intact. Our results, together with previous reports, indicate that perturbations of TBX4, rather than TBX2, cause severe lung phenotypes in humans.


Asunto(s)
Síndrome de Dificultad Respiratoria del Recién Nacido , Insuficiencia Respiratoria , Humanos , Recién Nacido , Masculino , Hipertensión Pulmonar Primaria Familiar , Pulmón , Fenotipo , Proteínas de Dominio T Box/genética
3.
Pediatr Dev Pathol ; : 10935266231213464, 2023 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-38044468

RESUMEN

Acinar dysplasia (AcDys) of the lung is a rare lethal developmental disorder in neonates characterized by severe respiratory failure and pulmonary arterial hypertension refractory to treatment. Recently, abnormalities of TBX4-FGF10-FGFR2-TMEM100 signaling regulating lung development have been reported in patients with AcDys due to heterozygous single-nucleotide variants or copy-number variant deletions involving TBX4, FGF10, or FGFR2. Here, we describe a female neonate who died at 4 hours of life due to severe respiratory distress related to AcDys diagnosed by postmortem histopathologic evaluation. Genomic analyses revealed a novel deleterious heterozygous missense variant c.728A>C (p.Asn243Thr) in TBX4 that arose de novo on paternal chromosome 17. We also identified 6 candidate hypomorphic rare variants in the TBX4 enhancer in trans to TBX4 coding variant. Gene expression analyses of proband's lung tissue showed a significant reduction of TMEM100 expression with near absence of TMEM100 within the endothelium of arteries and capillaries by immunohistochemistry. These results support the pathogenicity of the detected TBX4 variant and provide further evidence that disrupted signaling between TBX4 and TMEM100 may contribute to severe lung phenotypes in humans, including AcDys.

4.
Genome Biol ; 24(1): 205, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697406

RESUMEN

Resolving complex genomic regions rich in segmental duplications (SDs) is challenging due to the high error rate of long-read sequencing. Here, we describe a targeted approach with a novel genome assembler PhaseDancer that extends SD-rich regions of interest iteratively. We validate its robustness and efficiency using a golden-standard set of human BAC clones and in silico-generated SDs with predefined evolutionary scenarios. PhaseDancer enables extension of the incomplete complex SD-rich subtelomeric regions of Great Ape chromosomes orthologous to the human chromosome 2 (HSA2) fusion site, informing a model of HSA2 formation and unravelling the evolution of human and Great Ape genomes.


Asunto(s)
Hominidae , Humanos , Animales , Hominidae/genética , Duplicaciones Segmentarias en el Genoma , Telómero , Genómica , Cromosomas Humanos
5.
Am J Respir Crit Care Med ; 208(6): 709-725, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37463497

RESUMEN

Rationale: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal developmental disorder of lung morphogenesis caused by insufficiency of FOXF1 (forkhead box F1) transcription factor function. The cellular and transcriptional mechanisms by which FOXF1 deficiency disrupts human lung formation are unknown. Objectives: To identify cell types, gene networks, and cell-cell interactions underlying the pathogenesis of ACDMPV. Methods: We used single-nucleus RNA and assay for transposase-accessible chromatin sequencing, immunofluorescence confocal microscopy, and RNA in situ hybridization to identify cell types and molecular networks influenced by FOXF1 in ACDMPV lungs. Measurements and Main Results: Pathogenic single-nucleotide variants and copy-number variant deletions involving the FOXF1 gene locus in all subjects with ACDMPV (n = 6) were accompanied by marked changes in lung structure, including deficient alveolar development and a paucity of pulmonary microvasculature. Single-nucleus RNA and assay for transposase-accessible chromatin sequencing identified alterations in cell number and gene expression in endothelial cells (ECs), pericytes, fibroblasts, and epithelial cells in ACDMPV lungs. Distinct cell-autonomous roles for FOXF1 in capillary ECs and pericytes were identified. Pathogenic variants involving the FOXF1 gene locus disrupt gene expression in EC progenitors, inhibiting the differentiation or survival of capillary 2 ECs and cell-cell interactions necessary for both pulmonary vasculogenesis and alveolar type 1 cell differentiation. Loss of the pulmonary microvasculature was associated with increased VEGFA (vascular endothelial growth factor A) signaling and marked expansion of systemic bronchial ECs expressing COL15A1 (collagen type XV α 1 chain). Conclusions: Distinct FOXF1 gene regulatory networks were identified in subsets of pulmonary endothelial and fibroblast progenitors, providing both cellular and molecular targets for the development of therapies for ACDMPV and other diffuse lung diseases of infancy.


Asunto(s)
Síndrome de Circulación Fetal Persistente , Recién Nacido , Humanos , Síndrome de Circulación Fetal Persistente/genética , Síndrome de Circulación Fetal Persistente/patología , Redes Reguladoras de Genes/genética , Factor A de Crecimiento Endotelial Vascular/genética , Células Endoteliales/patología , Multiómica , Pulmón/patología , ARN , Factores de Transcripción Forkhead/genética
6.
Front Immunol ; 14: 1197054, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37483635

RESUMEN

Background: Keratoconus (KTCN) is the most common corneal ectasia resulting in a conical shape of the cornea. Here, genomic variation in the corneal epithelium (CE) across the keratoconic cone surface in patients with KTCN and its relevance in the functioning of the immune system were assessed. Methods: Samples from four unrelated adolescent patients with KTCN and two control individuals were obtained during the CXL and PRK procedures, respectively. Three topographic regions, central, middle, and peripheral, were separated towards the whole-genome sequencing (WGS) study embracing a total of 18 experimental samples. The coding and non-coding sequence variation, including structural variation, was assessed and then evaluated together with the previously reported transcriptomic outcomes for the same CE samples and full-thickness corneas. Results: First, pathway enrichment analysis of genes with identified coding variants pointed to "Antigen presentation" and "Interferon alpha/beta signaling" as the most overrepresented pathways, indicating the involvement of inflammatory responses in KTCN. Both coding and non-coding sequence variants were found in genes (or in their close proximity) linked to the previously revealed KTCN-specific cellular components, namely, "Actin cytoskeleton", "Extracellular matrix", "Collagen-containing extracellular matrix", "Focal adhesion", "Hippo signaling pathway", and "Wnt signaling" pathways. No genomic heterogeneity across the corneal surface was found comparing the assessed topographic regions. Thirty-five chromosomal regions enriched in both coding and non-coding KTCN-specific sequence variants were revealed, with a most representative 5q locus previously recognized as involved in KTCN. Conclusion: The identified genomic features indicate the involvement of innate and adaptive immune system responses in KTCN pathogenesis.


Asunto(s)
Queratocono , Humanos , Adolescente , Queratocono/genética , Queratocono/patología , Córnea/patología , Colágeno/genética , Transcriptoma , Perfilación de la Expresión Génica
7.
Front Microbiol ; 14: 1187625, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37350786

RESUMEN

Introduction: The development of molecular biology methods and their application in microbial research allowed the detection of many new pathogens that cause urinary tract infections (UTIs). Despite the advances of using new research techniques, the etiopathogenesis of UTIs, especially in patients undergoing dialysis and patients after kidney transplantation, is still not fully understood. Methods: This study aimed to characterize and compare the composition of the bacterial element of the urinary tract microbiome between the groups of patients undergoing dialysis (n = 50) and patients after kidney transplantation (n = 50), with positive or negative urine culture, compared to healthy individuals (n = 50). Results: Asymptomatic bacteriuria was observed in 30% of the urine cultures of patients undergoing dialysis and patients after kidney transplantation, with Escherichia coli as the most dominant microorganism (73%) detected with the use of classical microbiology techniques. However, differences in the bacterial composition of the urine samples between the evaluated patient groups were demonstrated using the amplicon sequencing. Finegoldia, Leptotrichia, and Corynebacterium were found to be discriminative bacteria genera in patients after dialysis and kidney transplantation compared to the control group. In addition, in all of urine samples, including those without bacteriuria in classical urine culture, many types of bacteria have been identified using 16S rRNA sequencing. Discussion: The revealed microbial characteristics may form the basis in searching for new diagnostic markers in treatment of patients undergoing dialysis and patients after kidney transplantation.

8.
Genes (Basel) ; 14(3)2023 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-36980834

RESUMEN

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a lethal lung developmental disorder caused by the arrest of fetal lung formation, resulting in neonatal death due to acute respiratory failure and pulmonary arterial hypertension. Heterozygous single-nucleotide variants or copy-number variant (CNV) deletions involving the FOXF1 gene and/or its lung-specific enhancer are found in the vast majority of ACDMPV patients. ACDMPV is often accompanied by extrapulmonary malformations, including the gastrointestinal, cardiac, or genitourinary systems. Thus far, most of the described ACDMPV patients have been diagnosed post mortem, based on histologic evaluation of the lung tissue and/or genetic testing. Here, we report a case of a prenatally detected de novo CNV deletion (~0.74 Mb) involving the FOXF1 gene in a fetus with ACDMPV and hydronephrosis. Since ACDMPV is challenging to detect by ultrasound examination, the more widespread implementation of prenatal genetic testing can facilitate early diagnosis, improve appropriate genetic counselling, and further management.


Asunto(s)
Factores de Transcripción Forkhead , Hidronefrosis , Síndrome de Circulación Fetal Persistente , Humanos , Recién Nacido , Feto/patología , Factores de Transcripción Forkhead/genética , Hidronefrosis/diagnóstico por imagen , Hidronefrosis/genética , Síndrome de Circulación Fetal Persistente/diagnóstico por imagen , Síndrome de Circulación Fetal Persistente/genética , Eliminación de Secuencia
9.
Am J Respir Crit Care Med ; 207(7): 855-864, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36367783

RESUMEN

Over the past decade, recognition of the profound impact of the TBX4 (T-box 4) gene, which encodes a member of the evolutionarily conserved family of T-box-containing transcription factors, on respiratory diseases has emerged. The developmental importance of TBX4 is emphasized by the association of TBX4 variants with congenital disorders involving respiratory and skeletal structures; however, the exact role of TBX4 in human development remains incompletely understood. Here, we discuss the developmental, tissue-specific, and pathological TBX4 functions identified through human and animal studies and review the published TBX4 variants resulting in variable disease phenotypes. We also outline future research directions to fill the gaps in our understanding of TBX4 function and of how TBX4 disruption affects development.


Asunto(s)
Proteínas de Dominio T Box , Factores de Transcripción , Animales , Humanos , Proteínas de Dominio T Box/genética , Factores de Transcripción/genética , Fenotipo
10.
PeerJ ; 10: e14003, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36124135

RESUMEN

FGF10, as an FGFR2b-specific ligand, plays a crucial role during cell proliferation, multi-organ development, and tissue injury repair. The developmental importance of FGF10 has been emphasized by the identification of FGF10 abnormalities in human congenital disorders affecting different organs and systems. Single-nucleotide variants in FGF10 or FGF10-involving copy-number variant deletions have been reported in families with lacrimo-auriculo-dento-digital syndrome, aplasia of the lacrimal and salivary glands, or lethal lung developmental disorders. Abnormalities involving FGF10 have also been implicated in cleft lip and palate, myopia, or congenital heart disease. However, the exact developmental role of FGF10 and large phenotypic heterogeneity associated with FGF10 disruption remain incompletely understood. Here, we review human and animal studies and summarize the data on FGF10 mechanism of action, expression, multi-organ function, as well as its variants and their usefulness for clinicians and researchers.


Asunto(s)
Labio Leporino , Fisura del Paladar , Enfermedades del Aparato Lagrimal , Aparato Lagrimal , Enfermedades Pulmonares , Sindactilia , Animales , Humanos , Aparato Lagrimal/anomalías , Factor 10 de Crecimiento de Fibroblastos/genética
11.
Mol Genet Genomic Med ; 10(11): e2062, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36124617

RESUMEN

BACKGROUND: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) results from haploinsufficiency of the mesenchymal transcription factor FOXF1 gene. To date, only one case of an ACDMPV-causative CNV deletion inherited from a very-low level somatic mosaic mother has been reported. METHODS: Clinical, histopathological, and molecular studies, including whole genome sequencing, chromosomal microarray analysis, qPCR, and Sanger sequencing, followed by in vitro fertilization (IVF) with preimplantation genetic testing (PGT) were used to study a family with a deceased neonate with ACDMPV. RESULTS: A pathogenic CNV deletion of the lung-specific FOXF1 enhancer in the proband was found to be inherited from an unaffected mother, 36% mosaic for this deletion in her peripheral blood cells. The qPCR analyses of saliva, buccal cells, urine, nail, and hair samples revealed 19%, 18%, 15%, 19%, and 27% variant allele fraction, respectively, indicating a high recurrence risk. Grandparental studies revealed that the deletion arose on the mother's paternal chromosome 16. PGT studies revealed 44% embryos with the deletion, reflecting high-level germline mosaicism. CONCLUSION: Our data further demonstrate the importance of parental testing in ACDMPV families and reproductive usefulness of IVF with PGT in families with high-level parental gonosomal mosaicism.


Asunto(s)
Síndrome de Circulación Fetal Persistente , Humanos , Lactante , Recién Nacido , Femenino , Síndrome de Circulación Fetal Persistente/genética , Síndrome de Circulación Fetal Persistente/patología , Mosaicismo , Mucosa Bucal/patología , Eliminación de Secuencia , Factores de Transcripción Forkhead/genética , Pulmón/patología
13.
Invest Ophthalmol Vis Sci ; 63(9): 31, 2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-36036911

RESUMEN

Purpose: High myopia (HM), an eye disorder with at least -6.0 diopters refractive error, has a complex etiology with environmental, genetic, and likely epigenetic factors involved. To complement the DNA methylation assessment in children with HM, we analyzed genes that had significantly lower DNA methylation levels. Methods: The DNA methylation pattern was studied based on the genome-wide methylation data of 18 Polish children with HM paired with 18 controls. Genes overlapping CG dinucleotides with decreased methylation level in HM cases were assessed by enrichment analyses. From those, genes with CG dinucleotides in promoter regions were further evaluated based on exome sequencing (ES) data of 16 patients with HM from unrelated Polish families, Sanger sequencing data of the studied children, and the RNA sequencing data of human retinal ARPE-19 cells. Results: The CG dinucleotide with the most decreased methylation level in cases was identified in a promoter region of PCDHA10 that overlaps intronic regions of PCDHA1-9 of the PCDHA gene cluster in myopia 5q31 locus. Also, two single nucleotide variants, rs200661444, detected in our ES, and rs246073, previously found as associated with a refractive error in a genome-wide association study, were revealed within this gene cluster. Additionally, genes previously linked to ocular phenotypes, myopia-related traits, or loci, including ADAM20, ZFAND6, ETS1, ABHD13, SBSPON, SORBS2, LMOD3, ATXN1, and FARP2, were found to have decreased methylation. Conclusions: Alterations in the methylation pattern of specific CG dinucleotides may be associated with early-onset HM, so this could be used to develop noninvasive biomarkers of HM in children and adolescents.


Asunto(s)
Estudio de Asociación del Genoma Completo , Miopía , Adolescente , Niño , Preescolar , Metilación de ADN , Factores de Intercambio de Guanina Nucleótido/genética , Humanos , Familia de Multigenes , Miopía/genética , Factores de Riesgo
14.
Eur J Hum Genet ; 30(10): 1182-1186, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35902696

RESUMEN

Heterozygous single nucleotide variants (SNVs) or copy-number variant deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of patients with Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV), a lethal neonatal lung developmental disorder. We describe a four-generation family with a deceased ACDMPV neonate, her sibling from the electively terminated pregnancy, healthy mother with a history of pulmonary arterial hypertension (PAH), an unaffected aunt, an aunt deceased due to findings consistent with ACDMPV, and a reportedly unaffected grandmother, all with the frameshifting variant c.881_902dup (p.Gly302Profs*46) in FOXF1, and a deceased great-grandmother with a history of PAH. Genome sequencing analyses in the proband's unaffected mother revealed a non-coding putative regulatory SNV rs560517434-A within the lung-specific distant FOXF1 enhancer in trans to the FOXF1 frameshift mutation. Functional testing of this variant using an in vitro luciferase reporter assay showed that it increased FOXF1 promoter activity 10-fold. Our studies further demonstrate that non-coding SNVs in the FOXF1 enhancer region can rescue the lethal ACDMPV phenotype and support the compound inheritance gene dosage model.


Asunto(s)
Factores de Transcripción Forkhead , Síndrome de Circulación Fetal Persistente , Femenino , Factores de Transcripción Forkhead/genética , Mutación del Sistema de Lectura , Humanos , Recién Nacido , Nucleótidos , Síndrome de Circulación Fetal Persistente/genética , Alveolos Pulmonares/anomalías , Eliminación de Secuencia
16.
Eur J Med Genet ; 65(6): 104519, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35533956

RESUMEN

Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal lung developmental disorder in neonates due to heterozygous loss-of-function of the mesenchymal transcription factor gene, FOXF1. Interestingly, unlike ACDMPV-causing point mutations in FOXF1 that can be inherited from the mother or father, causative copy-number variant (CNV) deletions arise de novo and almost exclusively on chromosome 16 inherited from the mother (n = 50 vs. n = 3). Here, we describe a fourth case of a de novo paternal CNV deletion encompassing FOXF1, its neighboring long non-coding RNA gene FENDRR, and their distant lung-specific enhancer, identified in a 21-week-old fetus with tetralogy of Fallot, gastrointestinal and genitourinary abnormalities, a single umbilical artery, and patchy histopathological findings of ACDMPV in autopsy lung. We also review the ACDMPV-causative CNV deletions detected prenatally and propose that the majority of paternal deletions manifest with more severe additional non-lung abnormalities.


Asunto(s)
Síndrome de Circulación Fetal Persistente , Cromosomas Humanos Par 1 , Padre , Factores de Transcripción Forkhead/genética , Humanos , Recién Nacido , Masculino , Síndrome de Circulación Fetal Persistente/genética , Síndrome de Circulación Fetal Persistente/patología , Alveolos Pulmonares/patología
17.
Am J Med Genet A ; 188(5): 1420-1425, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35075769

RESUMEN

Variants involving TBX4 are associated with a wide variety of disorders, including pulmonary arterial hypertension, ischiocoxopodopatellar syndrome (ICPPS)/small patella syndrome (SPS), lethal lung developmental disorders (LLDDs) in neonates, heart defects, and prenatally lethal posterior amelia with pelvic and pulmonary hypoplasia syndrome. The objective of our study was to elucidate the wide variable phenotypic expressivity and incomplete penetrance in a three-generation family with a truncating variant in TBX4. In addition to exome and genome sequencing analyses, a candidate noncoding regulatory single nucleotide variant (SNV) within the lung-specific TBX4 enhancer was functionally tested using an in vitro luciferase reporter assay. A heterozygous frameshift variant c.1112dup (p.Pro372Serfs*14) in TBX4 was identified in patients with mild interstitial lung disease (1), bronchiolitis obliterans (1), recurrent pneumothorax (1), ICPPS/SPS (1), LLDD (2), and in unaffected individuals (4). In two deceased neonates with LLDD, we identified a noncoding SNV rs62069651-C located in trans to the mutated TBX4 allele that reduced the TBX4 promoter activity by 63% in the reporter assay. Our findings provide a functional evidence for the recently reported model of complex compound inheritance in which both TBX4 coding and in trans noncoding hypomorphic variants in the lung-specific enhancer of TBX4 contribute to LLDD.


Asunto(s)
Enfermedades Pulmonares , Anomalías del Sistema Respiratorio , Enfermedades del Desarrollo Óseo , Cadera/anomalías , Humanos , Recién Nacido , Isquion/anomalías , Pulmón/anomalías , Enfermedades Pulmonares/genética , Rótula/anomalías , Proteínas de Dominio T Box/genética
18.
Transl Vis Sci Technol ; 10(11): 6, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34478492

RESUMEN

Purpose: Mitochondrial DNA (mtDNA) abnormalities were previously found to be causative in the pathogenesis of various diseases. Here, comprehensive mitochondrial and nuclear sequence and transcript analyses, along with analyses of the methylation aspects of nuclear genes related to mitochondrial function, were performed in patients with keratoconus (KTCN) to evaluate their contribution to the KTCN pathogenesis. Methods: Blood mtDNA of 42 KTCN and 51 non-KTCN individuals was Sanger sequenced and analyzed along with the previously obtained corneal RNA-sequencing data of 20 KTCN and 21 non-KTCN individuals. In addition, the expression and methylation of mtDNA genes and 1223 mitochondria-related nuclear genes were evaluated. Results: The mtDNA sequence alterations detected in blood coincided with variants identified in transcripts of the matched corneal tissues. In KTCN corneas, 97 mitochondria-related genes were deregulated, including TGFB1, P4HB, and BCL2, which are involved in the extracellular matrix (ECM) organization, collagen formation, and focal adhesion pathways. No changes in the expression of mtDNA transcripts and no differentially methylated genes among the assessed mitochondrial-nuclear gene sets were found. Conclusions: The absence of corneal-specific mtDNA variants indicates that there is no direct relationship between mitochondrial sequence variability and KTCN phenotype in the studied individuals. However, the identified KTCN-specific transcriptomic alterations of the nuclear genes directly related to the mitochondria functioning point to their possible involvement in the ECM organization, collagen formation, and focal adhesion. Translational Relevance: The identification of abnormalities within nuclear genes regulating ECM formation, collagen synthesis, and/or focal adhesion may form the basis of future treatment strategies or predict the progression of corneal changes in KTCN.


Asunto(s)
Queratocono , Colágeno/genética , Matriz Extracelular/genética , Adhesiones Focales , Expresión Génica , Humanos , Queratocono/genética , Mitocondrias/genética
19.
Curr Issues Mol Biol ; 43(1): 276-285, 2021 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204856

RESUMEN

Dermal fibroblasts are responsible for the production of the extracellular matrix that undergoes significant changes during the skin aging process. These changes are partially controlled by the TGF-ß signaling, which regulates tissue homeostasis dependently on several genes, including CTGF and DNA methyltransferases. To investigate the potential differences in the regulation of the TGF-ß signaling and related molecular pathways at distinct developmental stages, we silenced the expression of TGFB1, TGFB3, TGFBR2, CTGF, DNMT1, and DNMT3A in the neonatal (HDF-N) and adult (HDF-A) human dermal fibroblasts using the RNAi method. Through Western blot, we analyzed the effects of the knockdowns of these genes on the level of the CTGF, TGFBR2, and DNMT3A proteins in both cell lines. In the in vitro assays, we observed that CTGF level was decreased after knockdown of DNMT1 in HDF-N but not in HDF-A. Similarly, the level of DNMT3A was decreased only in HDF-N after silencing of TGFBR2, TGFB3, or DNMT1. TGFBR2 level was lower in HDF-N after knockdown of TGFB3, DNMT1, or DNMT3A, but it was higher in HDF-A after TGFB1 silencing. The reduction of TGFBR2 after silencing of DNMT3A and vice versa in neonatal cells only suggests the developmental stage-specific interactions between these two genes. However, additional studies are needed to explain the dependencies between analyzed proteins.


Asunto(s)
Factor de Crecimiento del Tejido Conjuntivo/metabolismo , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN Metiltransferasa 3A/metabolismo , Fibroblastos/metabolismo , Receptor Tipo II de Factor de Crecimiento Transformador beta/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Adulto , Factores de Edad , Western Blotting , Línea Celular , Factor de Crecimiento del Tejido Conjuntivo/genética , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN Metiltransferasa 3A/genética , Fibroblastos/citología , Humanos , Recién Nacido , Interferencia de ARN , Receptor Tipo II de Factor de Crecimiento Transformador beta/genética , Piel/citología , Factor de Crecimiento Transformador beta3/genética
20.
Respir Res ; 22(1): 212, 2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315444

RESUMEN

BACKGROUND: Alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV) is a rare lethal congenital lung disorder in neonates characterized by severe progressive respiratory failure and refractory pulmonary hypertension, resulting from underdevelopment of the peripheral pulmonary tree. Causative heterozygous single nucleotide variants (SNVs) or copy-number variant (CNV) deletions involving FOXF1 or its distant lung-specific enhancer on chromosome 16q24.1 have been identified in 80-90% of ACDMPV patients. FOXF1 maps closely to and regulates the oppositely oriented FENDRR, with which it also shares regulatory elements. METHODS: To better understand the transcriptional networks downstream of FOXF1 that are relevant for lung organogenesis, using RNA-seq, we have examined lung transcriptomes in 12 histopathologically verified ACDMPV patients with or without pathogenic variants in the FOXF1 locus and analyzed gene expression profile in FENDRR-depleted fetal lung fibroblasts, IMR-90. RESULTS: RNA-seq analyses in ACDMPV neonates revealed changes in the expression of several genes, including semaphorins (SEMAs), neuropilin 1 (NRP1), and plexins (PLXNs), essential for both epithelial branching and vascular patterning. In addition, we have found deregulation of the vascular endothelial growth factor (VEGF) signaling that also controls pulmonary vasculogenesis and a lung-specific endothelial gene TMEM100 known to be essential in vascular morphogenesis. Interestingly, we have observed a substantial difference in gene expression profiles between the ACDMPV samples with different types of FOXF1 defect. Moreover, partial overlap between transcriptome profiles of ACDMPV lungs with FOXF1 SNVs and FENDRR-depleted IMR-90 cells suggests contribution of FENDRR to ACDMPV etiology. CONCLUSIONS: Our transcriptomic data imply potential crosstalk between several lung developmental pathways, including interactions between FOXF1-SHH and SEMA-NRP or VEGF/VEGFR2 signaling, and provide further insight into complexity of lung organogenesis in humans.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Pulmón/metabolismo , Síndrome de Circulación Fetal Persistente/metabolismo , Semaforinas/metabolismo , Transducción de Señal/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Células Cultivadas , Femenino , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica/métodos , Técnicas de Silenciamiento del Gen/métodos , Humanos , Recién Nacido , Pulmón/patología , Masculino , Síndrome de Circulación Fetal Persistente/genética , Síndrome de Circulación Fetal Persistente/patología , Semaforinas/genética , Factor A de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA