RESUMEN
Exogenous enzymes as alternatives to feed antibiotics in poultry has become an emerging research area with the emergence of antibiotic resistance. The objective was to evaluate the effects of diet medication (antibiotics) and ß-glucanase (BGase) on digesta soluble ß-glucan depolymerization, carbohydrate fermentation, and performance of coccidiosis-vaccinated broiler chickens fed wheat-based diets. A total of 1,782 broilers were raised on litter floor pens, and each treatment was assigned to 1 pen in each of the 9 rooms. The 3 dietary treatments were based on wheat as the sole grain (control, control + medication and control + 0.1% BGase), and the birds were fed the respective treatments ad libitum from 0 to 33 d. Treatments were arranged in a randomized complete block design and analyzed as a one-way ANOVA. Beta-glucanase reduced the peak molecular weight, weight average molecular weight (Mw) and maximum molecular weight for the smallest 10% ß-glucan molecules (MW-10%) in ileal digesta at d 11 and 33, whereas diet medication reduced Mw and MW-10% at d 33 compared to the control (P < 0.01). Beta-glucanase and medication reduced the ileal viscosity at d 11 compared to the control (P = 0.010). Ileal propionic acid concentration at d 11 and caecal total SCFA, acetic, and butyric acid concentrations at d 33 were lower in the BGase-supplemented diet than in the control (P < 0.05). The BGase-added diet had higher duodenal pH compared to the control at d 33 (P = 0.026). The effect of medication on carbohydrate fermentation was minimal. Diet medication increased weight gain after d 11, whereas BGase increased the gain for the total trial period compared to the control (P < 0.001). Feed intake was not affected by the dietary treatment. Medication and BGase improved feed efficiency after d 11 compared to the control (P < 0.001). The response to diet medication was larger than BGase, considering weight gain and feed efficiency after d 11 (P < 0.001). In conclusion, diet medication and BGase depolymerized high molecular weight ileal soluble ß-glucan and increased overall bird performance. Dietary BGase may benefit bird health in broilers fed wheat-based diets without medication.
RESUMEN
Exogenous ß-glucanase (BGase) improves nutrient digestibility and production performance in laying hens fed barley-based diets, but the effect of enzyme and the dosage on ß-glucan depolymerization and fermentation in the gastrointestinal tract is poorly understood. The objectives of the study were to determine the effects of hulless barley (HB) and BGase levels on digestive tract ß-glucan depolymerization and fermentation in laying hens. A total of 108 Lohman-LSL Lite hens were housed in cages and fed 2 levels of HB (CDC Fibar; 0 and 73%) by substituting wheat in the diet and graded levels of BGase (Econase GT 200 P from ABVista; 0, 0.01 and 0.1% - 0, 20,000, and 200,000 BU/kg) in a 2â¯×â¯3 factorial arrangement. Birds were fed experimental diets for 8 weeks, starting at 35 wk of age. Digestive tract samples were collected at the end of the experiment. Statistical significance was set at P ≤ 0.05. Beta-glucan peak molecular weight was lower with the 0.1 compared to both 0 and 0.01% BGase levels, whereas weight average molecular weight was lower with the 0.1 compared to 0% BGase for 73% HB. The maximum molecular weight for the smallest 10% ß-glucan molecules decreased with the increasing BGase. Overall, ß-glucan molecular weight in the ileum was higher when the birds were given 73 in comparison to 0% HB diets. Total and major short chain fatty acids (SCFA) in the ileum were lower with 0.1 and 0.01 (except propionic acid) compared to 0% BGase in the birds fed 73% HB, but not 0% HB. Interactions between the main effects were found for the cecal acetic and isobutyric acids. In conclusion, exogenous BGase depolymerized high molecular weight ß-glucan in HB and wheat. The effects of HB and BGase on carbohydrate fermentation were not apparent, although it appears ileal SCFA concentrations were lower with increasing levels of BGase.
Asunto(s)
Hordeum , beta-Glucanos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pollos , Dieta/veterinaria , Digestión , Ácidos Grasos Volátiles/metabolismo , Femenino , Fermentación , Íleon/metabolismo , Peso Molecular , Triticum , beta-Glucanos/metabolismoRESUMEN
Exogenous ß-glucanase (BGase) in barley-based feed has been shown to reduce digesta viscosity in chickens, and thereby improve performance. Less well studied is the potential for BGase to convert barley ß-glucan into low molecular weight carbohydrates, which might influence digestive tract function and enteric disease. Coccidiosis-vaccinated broiler chickens were fed graded levels of hulless barley (HB) and BGase to determine their effects on ß-glucan depolymerization and digestive tract characteristics. Broilers were fed high ß-glucan HB (0%, 30% and 60% replacing wheat) and BGase (0%, 0.01% and 0.1%) in a 3 × 3 factorial arrangement. A total of 5,346 broilers were raised in litter floor pens and vaccinated for coccidiosis on d 5. Each treatment was assigned to 1 pen in each of 9 rooms. The significance level was set at P ≤ 0.05. At both 11 and 33 d of broiler ages, peak molecular weight of ß-glucan in ileal digesta decreased with increasing BGase for 30% and 60% HB. The maximum molecular weight for the smallest 10% ß-glucan molecules (MW-10%) decreased with BGase at both ages for 30% and 60% HB; for birds fed 0% HB, only 0.1% BGase decreased MW-10%. The 0.1% BGase increased caecal short chain fatty acids (SCFA) compared to the 0.01% BGase at d 11 only for the 60% HB. Ileal pH increased with increasing HB and BGase at d 11 and 33. Caecal pH was lower for 0.1% BGase than 0% BGase for 60% HB at d 11. Relative mRNA expression of interleukin 6 (IL-6) and IL-8 in the ileum increased with 0.1% BGase at d 11 and 33, respectively, whereas expression of ileal mucin 2 (MUC2) decreased with 0.1% BGase at d 33. In the caeca, interactions between HB and BGase were significant for monocarboxylate transporter 1 (MCT1) and mucin 5AC (MUC5 AC) on d 11, but no treatment effects were found at d 33. In conclusion, BGase depolymerized high molecular weight ß-glucan in HB in a dose-dependent manner. Hulless barley and BGase did not increase SCFA concentrations (except for 60% HB with 0.1% BGase at d 11) and caused minor effects on digestive tract histomorphological measurements and relative mRNA gene expression.
RESUMEN
INTRODUCTION: Limited use of medication in poultry feed led to the investigation of exogenous enzymes as antibiotic alternatives for controlling enteric disease. The objective of this study was to evaluate the effects of diet ß-glucanase (BGase) and medication on ß-glucan depolymerization, digestive tract characteristics, and growth performance of broilers. MATERIALS AND METHODS: Broilers were fed hulless barley (HB) based diets with BGase (Econase GT 200P from AB Vista; 0 and 0.1%) and medication (Bacitracin and Salinomycin Na; with and without) arranged as a 2 × 2 factorial. In Experiment 1, 160 broilers were housed in cages from d 0 to 28. Each treatment was assigned to 10 cages. In Experiment 2, broilers (2376) were housed in floor pens and vaccinated for coccidiosis on d 5. Each treatment was assigned to one floor pen in each of nine rooms. RESULTS: In Experiment 1, the soluble ß-glucan weighted average molecular weight (Mw) in the ileal digesta was lower with medication in the 0% BGase treatments. Peak molecular weight (Mp) and Mw were lower with BGase regardless of medication. The maximum molecular weight for the smallest 10% ß-glucan (MW-10%) was lower with BGase addition. In Experiment 2, Mp was lower with medication in 0% BGase treatments. Beta-glucanase resulted in lower Mp regardless of medication, and the degree of response was lower with medication. The MW-10% was lower with BGase despite antibiotic addition. Body weight gain and feed efficiency were higher with medication regardless of BGase use through-out the trial (except d 11-22 feed efficiency). Beta-glucanase resulted in higher body weight gain after d 11 and worsened and improved feed efficiency before and after d 11, respectively, in unmedicated treatments. CONCLUSION: BGase and medication caused the depolymerization of soluble ileal ß-glucan. Beta-glucanase acted as a partial replacement for diet medication by increasing growth performance in coccidiosis vaccinated broilers.
Asunto(s)
Pollos/fisiología , Coccidiosis/prevención & control , Glucano 1,4-beta-Glucosidasa/farmacología , Íleon/metabolismo , Enfermedades de las Aves de Corral/prevención & control , Alimentación Animal , Animales , Coccidiosis/tratamiento farmacológico , Coccidiosis/veterinaria , Suplementos Dietéticos , Digestión , Glucano 1,4-beta-Glucosidasa/administración & dosificación , Glucano 1,4-beta-Glucosidasa/uso terapéutico , Hordeum , Íleon/efectos de los fármacos , Enfermedades de las Aves de Corral/tratamiento farmacológico , Vacunación/veterinaria , beta-Glucanos/metabolismoRESUMEN
The reduced use of antibiotics in poultry feed has led to the investigation of alternatives to antibiotics, and one such substitution is fermentable carbohydrates. Exogenous ß-glucanase (BGase) is commonly used in poultry fed barley-based diets to reduce digesta viscosity. The effects of hulless barley (HB) and BGase levels on ileal digesta soluble ß-glucan molecular weight, digestive tract characteristics, and performance of broiler chickens were determined. A total of 360 day-old broilers were housed in battery cages (4 birds per cage) and fed graded levels of high ß-glucan HB (CDC Fibar; 0, 30, and 60% replacing wheat) and BGase (Econase GT 200 P; 0, 0.01, and 0.1%) in a 3 × 3 factorial arrangement. Beta-glucan peak molecular weight in the ileal digesta was lower with 30 and 60 than 0% HB, whereas the peak decreased with increasing BGase. The weight average molecular weight was lower at 0.1 than 0% BGase in wheat diets, whereas in HB diets, it was lower at 0.01 and 0.1 than 0% BGase. The maximum molecular weight was lower with 0.01 and 0.1 than 0% BGase regardless of the HB level. The maximum molecular weight was lower with HB than wheat at 0 or 0.01% BGase. Overall, empty weights and lengths of digestive tract sections increased with increasing HB, but there was no BGase effect. Hulless barley decreased the duodenum and jejunum contents, whereas increasing the gizzard (diets with BGase), ileum, and colon contents. The jejunum and small intestine contents decreased with increasing BGase. Ileal and colon pH increased with increasing HB, but there was no BGase effect. Treatment effects were minor on short-chain fatty acids levels and performance. In conclusion, exogenous BGase depolymerized the ileal digesta soluble ß-glucan in broiler chickens in a dose-dependent manner. Overall, feed efficiency was impaired by increasing HB levels. However, HB and BGase did not affect carbohydrate fermentation in the ileum and ceca, although BGase decreased ileal viscosity and improved feed efficiency at the 0.1% dietary level.
Asunto(s)
Pollos , Dextranasa , Dieta , Tracto Gastrointestinal , Hordeum , beta-Glucanos , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Pollos/crecimiento & desarrollo , Pollos/metabolismo , Dextranasa/metabolismo , Dextranasa/farmacología , Dieta/veterinaria , Digestión , Tracto Gastrointestinal/metabolismo , Hordeum/clasificación , Hordeum/metabolismo , Íleon/metabolismo , Peso Molecular , beta-Glucanos/químicaRESUMEN
Diet ß-glucanase (BGase) depolymerizes viscous ß-glucan into lower molecular weight carbohydrates, which might act as a prebiotic in chickens exposed to enteric disease. Coccidiosis-challenged broiler chickens were fed graded levels of hulless barley (HB) and BGase to determine their effects on growth performance. Broilers were fed high ß-glucan HB (CDC Fibar; 0, 30, and 60% replacing wheat) and BGase (Econase GT 200P; 0, 0.01, and 0.1%) in a 3 × 3 factorial arrangement. A total of 5,346 broilers were raised in litter floor pens and vaccinated for coccidiosis in feed and water on day 5. Each treatment was assigned to 1 pen (66 birds) in each of 9 rooms. Statistical significance was set at P ≤ 0.05. Overall, HB decreased body weight gain (BWG) and increased feed: gain ratio (F:G) of broilers. From day 0 to 11, BGase did not affect BWG and F:G, at the 0 and 30% HB. However, at 60% HB, the 0.01% BGase improved them, and the 0.1% BGase had no effect on BWG and increased F:G. For the day 22 to 32 and 0 to 32 periods, BGase did not affect BWG for 0 and 30% HB levels, but for the 60% HB, both BGase levels increased gain. The 0.1% level of BGase resulted in the lowest F:G for all HB levels, with the degree of response increasing with HB. No interaction was found for ileal digesta viscosity at day 11; the level of HB did not affect viscosity, but both levels of BGase decreased viscosity. At day 33, BGase did not affect viscosity at 0 and 30% HB levels, but viscosity was lowered for the 0.1% BGase treatment at the 60% HB level. In conclusion, HB reduced broiler performance, and BGase alleviated most but not all the effects. In young birds fed 60% HB, 0.1% BGase did not impact BWG and increased F:G.