Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Environ Sci Technol Lett ; 11(8): 786-797, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39156923

RESUMEN

Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic organic chemicals of global concern. A group of 36 scientists and regulators from 18 countries held a hybrid workshop in 2022 in Zürich, Switzerland. The workshop, a sequel to a previous Zürich workshop held in 2017, deliberated on progress in the last five years and discussed further needs for cooperative scientific research and regulatory action on PFASs. This review reflects discussion and insights gained during and after this workshop and summarizes key signs of progress in science and policy, ongoing critical issues to be addressed, and possible ways forward. Some key take home messages include: 1) understanding of human health effects continues to develop dramatically, 2) regulatory guidelines continue to drop, 3) better understanding of emissions and contamination levels is needed in more parts of the world, 4) analytical methods, while improving, still only cover around 50 PFASs, and 5) discussions of how to group PFASs for regulation (including subgroupings) have gathered momentum with several jurisdictions proposing restricting a large proportion of PFAS uses. It was concluded that more multi-group exchanges are needed in the future and that there should be a greater diversity of participants at future workshops.

2.
Environ Sci Technol ; 2024 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-39031616

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs), released from petrogenic, pyrogenic or diagenetic sources (degradation of wood materials), are of global concern due to their adverse effects, and potential for long-range transport. While dissolved PAHs have been frequently reported in the literature, there has been no consistent approach of sampling across water bodies. Passive samplers from the AQUA/GAPS-MONET initiative were deployed at 46 sites (28 marine and 18 freshwater), and analyzed for 28 PAHs and six polycyclic musks (PCMs) centrally. Freely dissolved PAH concentrations were dominated by phenanthrene (mean concentration 1500 pg L-1; median 530 pg L-1) and other low molecular weight compounds. Greatest concentrations of phenanthrene, fluoranthene, and pyrene were typically from the same sites, mostly in Europe and North America. Of the PCMs, only galaxolide (72% of samples) and tonalide (61%) were regularly detected, and were significantly cross-correlated. Benchmarking of PAHs relative to penta- and hexachlorobenzene confirmed that the most remote sites (Arctic, Antarctic, and mountain lakes) displayed below average PAH concentrations. Concentrations of 11 of 28 PAHs, galaxolide and tonalide were positively correlated (P < 0.05) with population density within a radius of 5 km of the sampling site. Characteristic PAH ratios gave conflicting results, likely reflecting multiple PAH sources and postemission changes.

3.
J Hazard Mater ; 470: 134203, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38581874

RESUMEN

Wastewater treatment plants (WWTPs) have been recognized as secondary sources of per- and polyfluoroalkyl substances (PFAS) released into the environment. In this study, PFAS concentrations were measured in effluent and biosolids samples collected from 75 WWTPs across Australia during the 2016 Census period, which covers more than half of the Australian population. Twelve PFAS compounds, including six C5-C10 perfluoroalkyl carboxylic acids (PFCAs), four perfluoro sulfonic acids (PFSAs) such as perfluorobutane sulfonate (PFBS), perfuorohexane sulfonic (PFHxS), perfluorooctane sulfonic acid (PFOS), and perfluorodecane sulfonic acid (PFDS), and one fluorotelomer sulfonic acid (6:2 FTS), were detected in the effluent, with concentrations up to 504 ng/L (PFHxS). Among these, perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA), and perfluoropentanic acid (PFPeA) exhibited the highest median concentrations. In the biosolids, a total of 21 PFAS compounds were detected, encompassing ten C4-C14 PFCAs, four PFSAs, two FTS (6:2 and 8:2 FTS), perfluorooctane sulfonamide (PFOSA), two perfluorooctane sulfonamido acetic acid (NMethyl FOSAA and NEthyl FOSAA), and two perfluorooctane sulfonamido ethanol (FOSE), with dry weight (dw) concentrations approaching 235 ng/g (PFOS). The highest median and mean concentrations were observed for perfluorodecanoic acid (PFDA) and PFOS. An annual discharge of approximately 250 kg of the total 21 PFAS compounds was estimated through the effluent and biosolids of the participating WWTPs. Notably, PFOS and 6:2 FTS constituted the largest proportion of total PFAS in the WWTPs' output. While PFCAs were higher in effluent concentrations compared to influent levels across most WWTPs (92% of WWTPs for ∑8PFCAs), the concentrations of PFSAs either decreased or remained relatively stable (in 80% of WWTPs for ∑4PFSAs) throughout the wastewater treatment process.


Asunto(s)
Fluorocarburos , Eliminación de Residuos Líquidos , Aguas Residuales , Contaminantes Químicos del Agua , Australia , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Aguas Residuales/química , Monitoreo del Ambiente , Aguas del Alcantarillado/análisis , Ácidos Alcanesulfónicos/análisis
4.
Environ Sci Technol ; 58(15): 6772-6780, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38577774

RESUMEN

The quality of chemical analysis is an important aspect of passive sampling-based environmental assessments. The present study reports on a proficiency testing program for the chemical analysis of hydrophobic organic compounds in silicone and low-density polyethylene (LDPE) passive samplers and hydrophilic compounds in polar organic chemical integrative samplers. The median between-laboratory coefficients of variation (CVs) of hydrophobic compound concentrations in the polymer phase were 33% (silicone) and 38% (LDPE), similar to the CVs obtained in four earlier rounds of this program. The median CV over all rounds was 32%. Much higher variabilities were observed for hydrophilic compound concentrations in the sorbent: 50% for the untransformed data and a factor of 1.6 after log transformation. Limiting the data to the best performing laboratories did not result in less variability. Data quality for hydrophilic compounds was only weakly related to the use of structurally identical internal standards and was unrelated to the choice of extraction solvent and extraction time. Standard deviations of the aqueous concentration estimates for hydrophobic compound sampling by the best performing laboratories were 0.21 log units for silicone and 0.27 log units for LDPE (factors of 1.6 to 1.9). The implications are that proficiency testing programs may give more realistic estimates of uncertainties in chemical analysis than within-laboratory quality control programs and that these high uncertainties should be taken into account in environmental assessments.


Asunto(s)
Polietileno , Contaminantes Químicos del Agua , Polietileno/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Compuestos Orgánicos , Siliconas
5.
Environ Sci Technol ; 58(3): 1690-1699, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38189783

RESUMEN

Monitoring contamination from per- and polyfluoroalkyl substances (PFASs) in water systems impacted by aqueous film-forming foams (AFFFs) typically addresses a few known PFAS groups. Given the diversity of PFASs present in AFFFs, current analytical approaches do not comprehensively address the range of PFASs present in these systems. A suspect-screening and nontarget analysis (NTA) approach was developed and applied to identify novel PFASs in groundwater samples contaminated from historic AFFF use. A total of 88 PFASs were identified in both passive samplers and grab samples, and these were dominated by sulfonate derivatives and sulfonamide-derived precursors. Several ultrashort-chain (USC) PFASs (≤C3) were detected, 11 reported for the first time in Australian groundwater. Several transformation products were identified, including perfluoroalkane sulfonamides (FASAs) and perfluoroalkane sulfinates (PFASis). Two new PFASs were reported (((perfluorohexyl)sulfonyl)sulfamic acid; m/z 477.9068 and (E)-1,1,2,2,3,3,4,5,6,7,8,8,8-tridecafluorooct-6-ene-1-sulfonic acid; m/z 424.9482). This study highlights that several PFASs are overlooked using standard target analysis, and therefore, the potential risk from all PFASs present is likely to be underestimated.


Asunto(s)
Fluorocarburos , Agua Subterránea , Contaminantes Químicos del Agua , Fluorocarburos/análisis , Contaminantes Químicos del Agua/análisis , Australia , Agua
6.
Sci Rep ; 14(1): 1727, 2024 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-38242962

RESUMEN

Pesticides are ubiquitous in the catchments of the Great Barrier Reef (GBR) and regularly discharge into the nearshore waters. Effective management of pesticides requires suitable water quality guideline values (WQGVs), and further ecotoxicological data for many pesticides are needed to improve the reliability of environmental risk assessments. To help address this issue, toxicity thresholds were determined to two species of tropical marine microalgae Tisochrysis lutea and Tetraselmis sp. for a suite of herbicides detected in the GBR. Photosystem II (PSII) herbicides significantly reduced growth with no effect concentration (NEC) and 10% effect concentration (EC10) values spanning two orders of magnitude from 0.60 µg L-1 for diuron to 60 µg L-1 for simazine across both species. However, growth was insensitive to the non-PSII herbicides. The NEC/EC10 thresholds for most herbicide-microalgae combinations were greater than recent WQGVs intended to protect 99% of species (PC99); however, metribuzin was toxic to T. lutea at concentrations lower than the current PC99 value, which may have to be revisited. The toxicity thresholds for alternative herbicides derived here further inform the development of national and GBR-specific WQGVs, but more toxicity data is needed to develop WQGVs for the > 50 additional pesticides detected in catchments of the GBR.


Asunto(s)
Haptophyta , Herbicidas , Microalgas , Plaguicidas , Contaminantes Químicos del Agua , Herbicidas/toxicidad , Herbicidas/análisis , Reproducibilidad de los Resultados , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Plaguicidas/análisis
7.
Chemosphere ; 349: 140697, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37972864

RESUMEN

Non-target analysis (NTA) using high-resolution mass spectrometry is becoming a useful approach to screen for suspect and unknown chemicals. For comprehensive analyses, data-independent acquisition (DIA), like Sequential Windowed Acquisition of all THeoretical Mass Spectra (SWATH-MS) on Sciex instruments, is necessary, usually followed by library matching for feature annotation. The choice of parameters, such as acquisition window number and size, may influence the comprehensiveness of the suspect features detected. The goal of this study was to assess how mass spectrometric DIA settings may influence the ability to obtain confident annotations and identifications of features in environmental (river water, passive sample extract (PSE)), wastewater (unpreserved and acidified) and biological (urine) sample matrices. Each matrix was analysed using 11 different MS methods, with 5-15 variable size acquisition windows. True positive (TP) annotation (i.e., matching experimental and library spectra) rates were constant for PSE (40%) and highest for urine (18%), wastewater (34% and 36%, unpreserved and acidified, respectively) and river water (8%) when using higher numbers of windows (15). The number of annotated features was highest for PSE (12%) and urine (8.5%) when using more acquisition windows (9 and 14, respectively). Less complex matrices (based on average total ion chromatogram intensities) like river water, unpreserved and acidified wastewater have higher annotation rates (7.5%, 8% and 13.2%, respectively) when using less acquisition windows (5-6), indicating matrix dependency of optimum settings. Library scores varied widely for correct (scores between 6 and 100) as well as incorrect annotations (scores between 2 and 100), making it hard to define specific ideal cut-off values. Results highlight the need for properly curated libraries and careful optimization of SWATH-MS and other DIA methods for each individual matrix, finding the best ratio of total annotations to true positive, (i.e., correct) annotations to achieve best NTA results.


Asunto(s)
Aguas Residuales , Agua , Espectrometría de Masas
8.
Anal Chem ; 95(50): 18361-18369, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38061068

RESUMEN

The use of peak-picking algorithms is an essential step in all nontarget analysis (NTA) workflows. However, algorithm choice may influence reliability and reproducibility of results. Using a real-world data set, the aim of this study was to investigate how different peak-picking algorithms influence NTA results when exploring temporal and/or spatial trends. For this, drinking water catchment monitoring data, using passive samplers collected twice per year across Southeast Queensland, Australia (n = 18 sites) between 2014 and 2019, was investigated. Data were acquired using liquid chromatography coupled to high-resolution mass spectrometry. Peak picking was performed using five different programs/algorithms (SCIEX OS, MSDial, self-adjusting-feature-detection, two algorithms within MarkerView), keeping parameters identical whenever possible. The resulting feature lists revealed low overlap: 7.2% of features were picked by >3 algorithms, while 74% of features were only picked by a single algorithm. Trend evaluation of the data, using principal component analysis, showed significant variability between the approaches, with only one temporal and no spatial trend being identified by all algorithms. Manual evaluation of features of interest (p-value <0.01, log fold change >2) for one sampling site revealed high rates of incorrectly picked peaks (>70%) for three algorithms. Lower rates (<30%) were observed for the other algorithms, but with the caveat of not successfully picking all internal standards used as quality control. The choice is therefore currently between comprehensive and strict peak picking, either resulting in increased noise or missed peaks, respectively. Reproducibility of NTA results remains challenging when applied for regulatory frameworks.


Asunto(s)
Algoritmos , Análisis de Datos , Reproducibilidad de los Resultados , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos
9.
Chemosphere ; 340: 139758, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37567267

RESUMEN

Multilayer plastic pouch (MLPP) has an estimated 9% annual increase of market growth. However, the migrants it can introduce to food has not yet been systematically studied. A total of 79 MLPPs for baby food were purchased from major retail outlets in Australia. The methodology for testing chemical migration followed the design of previous studies using four types of selected simulants according to the European Committee Regulation No. 10/2011 method. Four bisphenols and five phthalic acid diesters (PAEs) were detected, including the ones known for endocrine disrupting effect in human. Three intentionally added and 23 non-intentionally added substances (NIAS) were tentatively identified through a suspect screening procedure. Out of the 23 NIAS, neopentyl glycol - phthalic acid - 1,6-hexanediol - phthalic acid oligomer was identified for the first time with MLPP. A further two NIAS were detected for the first time in baby food related products. For 40% of the pouches where adipic acid - diethylene glycol was detected, the estimated exposure from consuming one pouch of food per day may exceed the threshold of toxicological concern established based on the Cramer classification.


Asunto(s)
Contaminación de Alimentos , Ácidos Ftálicos , Humanos , Contaminación de Alimentos/análisis , Plásticos/análisis , Alimentos Infantiles/análisis , Ácidos Ftálicos/análisis , Embalaje de Alimentos
10.
Environ Sci Technol ; 57(36): 13635-13645, 2023 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-37648245

RESUMEN

The leaching of per- and polyfluoroalkyl substances (PFASs) from Australian firefighting training grounds has resulted in extensive contamination of groundwater and nearby farmlands. Humans, farm animals, and wildlife in these areas may have been exposed to complex mixtures of PFASs from aqueous film-forming foams (AFFFs). This study aimed to identify PFAS classes in pooled whole blood (n = 4) and serum (n = 4) from cattle exposed to AFFF-impacted groundwater and potentially discover new PFASs in blood. Thirty PFASs were identified at various levels of confidence (levels 1a-5a), including three novel compounds: (i) perfluorohexanesulfonamido 2-hydroxypropanoic acid (FHxSA-HOPrA), (ii) methyl((perfluorohexyl)sulfonyl)sulfuramidous acid, and (iii) methyl((perfluorooctyl)sulfonyl)sulfuramidous acid, belonging to two different classes. Biotransformation intermediate, perfluorohexanesulfonamido propanoic acid (FHxSA-PrA), hitherto unreported in biological samples, was detected in both whole blood and serum. Furthermore, perfluoroalkyl sulfonamides, including perfluoropropane sulfonamide (FPrSA), perfluorobutane sulfonamide (FBSA), and perfluorohexane sulfonamide (FHxSA) were predominantly detected in whole blood, suggesting that these accumulate in the cell fraction of blood. The suspect screening revealed several fluoroalkyl chain-substituted PFAS. The results suggest that targeting only the major PFASs in the plasma or serum of AFFF-exposed mammals likely underestimates the toxicological risks associated with exposure. Future studies of AFFF-exposed populations should include whole-blood analysis with high-resolution mass spectrometry to understand the true extent of PFAS exposure.


Asunto(s)
Fluorocarburos , Agua Subterránea , Humanos , Animales , Bovinos , Australia , Animales Salvajes , Plasma , Mamíferos
11.
Sci Total Environ ; 903: 166163, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37574069

RESUMEN

Wastewater-based epidemiology (WBE) relies on representative sampling that is typically achieved with autosamplers that collect time, flow, or volume proportional samples. The expense, resources and operational know-how associated with autosampler operation means they are only typically available at major wastewater treatment plants (WWTPs). This results in a lack of data on consumption levels in regional and remote areas, or in countries that lack the financial means. The aim of this study was to estimate and investigate trends in drug consumption across varying levels of remoteness in Australia. Field-calibrated, microporous polyethylene passive samplers were deployed over 2 periods (Aug/Sept 2019 and 2020) at 43 treatment plants covering all five categories of remoteness, as per Australian Bureau of Statistics definitions (Major cities, Inner regional, Outer regional, Remote, and Very remote). The per capita consumption of cocaine, methylamphetamine, nicotine, oxycodone and MDMA were estimated. No spatial trends between remoteness and drug consumption were observed, except for cocaine, where Major cities had a 5-to-10-fold higher consumption compared to the other levels of remoteness in 2019 and 2020, respectively. Outer regional sites had the highest and lowest methylamphetamine consumption. The variance in drug use among sites was much higher in Remote (and Inner/Outer regional) sites when compared with Major cities. A significant and consistent decrease in oxycodone consumption was observed at all sites between 2019 and 2020, possibly related to regulatory changes and the COVID-19 pandemic where elective surgeries were suspended. The majority of sites experienced a decrease in cocaine and methylamphetamine consumption, possibly due to border restrictions or changes in supply and demand dynamics. This was the first extensive passive sampling study to assess drug consumption in urban, regional, and remote locations, demonstrating that passive samplers can facilitate extension of wastewater-based drug monitoring programs to sites where other representative sampling options are very difficult to implement.

12.
Sci Total Environ ; 903: 166594, 2023 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-37640071

RESUMEN

L'Albufera Natural Park (Valencia, Spain) is a protected wetland of international significance that provides critical habitats to endemic and threatened bird and plant species. This study aims to use multiple cross-validation techniques to generate an accurate estimation of the environmental risk of organic contaminants (OCs) in an internationally important coastal wetland, to identify compounds of concern and their potential sources and risk factors. Microporous polyethylene tube (MPT) passive samplers were deployed at 12 locations across L'Albufera Natural Park with concurrent grab samples collected. A subset of MPT samplers were also analysed by an additional laboratory in Australia to widen the range of contaminants and assess interlaboratory reproducibility of results. Forty-three pesticides, 20 pharmaceuticals and personal care products (PPCPs), 20 per-and polyfluoroalkyl substances (PFAS) and 4 organophosphorus flame retardants (OPFRs) were detected in the MPT samplers. The fungicides tebuconazole and difenoconazole were detected at the highest concentrations in passive samplers (maximum concentrations, 153 ng sampler-1 and 106 ng sampler-1, respectively). Several other pesticides were detected in all locations (mean concentrations >1 ng sampler-1). The compounds fenamiphos, propyzamide, difenoconazole, propiconazole, metsulfuron methyl, sodium bis (perfluorohexyl) phosphinate (6:6 PFPiA), 6:2 fluorotelomer sulfonamide alkylbetaine (6:2 FTAB), 6:2 fluorotelomersulfonate (6:2 FTS), citalopram desmethyl and citalopram were reported in the wetland for the first time. Spatial distribution analysis revealed higher pesticide concentrations in the North of L'Albufera. A risk quotient (RQ) analysis showed that ibuprofen is of concern in the area. Overall, the MPT sampling approach is promising as a risk assessment tool for better understanding the transport and fate of OCs in protected areas.

13.
Environ Sci Technol ; 57(25): 9342-9352, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37294896

RESUMEN

Persistent organic pollutants (POPs) are recognized as pollutants of global concern, but so far, information on the trends of legacy POPs in the waters of the world has been missing due to logistical, analytical, and financial reasons. Passive samplers have emerged as an attractive alternative to active water sampling methods as they accumulate POPs, represent time-weighted average concentrations, and can easily be shipped and deployed. As part of the AQUA-GAPS/MONET, passive samplers were deployed at 40 globally distributed sites between 2016 and 2020, for a total of 21 freshwater and 40 marine deployments. Results from silicone passive samplers showed α-hexachlorocyclohexane (HCH) and γ-HCH displaying the greatest concentrations in the northern latitudes/Arctic Ocean, in stark contrast to the more persistent penta (PeCB)- and hexachlorobenzene (HCB), which approached equilibrium across sampling sites. Geospatial patterns of polychlorinated biphenyl (PCB) aqueous concentrations closely matched original estimates of production and use, implying limited global transport. Positive correlations between log-transformed concentrations of Σ7PCB, ΣDDTs, Σendosulfan, and Σchlordane, but not ΣHCH, and the log of population density (p < 0.05) within 5 and 10 km of the sampling sites also supported limited transport from used sites. These results help to understand the extent of global distribution, and eventually time-trends, of organic pollutants in aquatic systems, such as across freshwaters and oceans. Future deployments will aim to establish time-trends at selected sites while adding to the geographical coverage.


Asunto(s)
Contaminantes Atmosféricos , Contaminantes Ambientales , Hidrocarburos Clorados , Plaguicidas , Bifenilos Policlorados , Bifenilos Policlorados/análisis , Monitoreo del Ambiente/métodos , Hexaclorobenceno/análisis , Agua Dulce , Contaminantes Atmosféricos/análisis , Plaguicidas/análisis , Hidrocarburos Clorados/análisis
14.
Sci Total Environ ; 892: 164458, 2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37247727

RESUMEN

As Europe's second longest river, the Danube is an important water source for drinking water and irrigation for many countries, before discharging into the Black Sea in the East. Per- and poly-fluoroalkyl substances (PFAS) have been observed over the last two decades in concentrations exceeding the European Union's drinking water guidelines for total sum of 20 select PFAS of 0.1 µg L-1. Their presence is a result of current and historical use and high environmental persistence, necessitating their monitoring for human risk assessments. The aim of this study is to use recently developed passive sampling technology to calculate time-integrated water concentrations and mass loads of 11 select PFAS at 9 sites along the Danube River. Results indicate ∑11 PFAS concentrations in the range of 9.3-29.6 ng L-1 were not in exceedance of EU drinking water guidelines, but perfluorooctanesulfonic acid (PFOS) was in exceedance of the environmental quality standard (0.65 ng L-1) at all sampling locations. The highest ∑11 PFAS mass loads were observed at Ruse (9.5 kg day-1) and Budapest (6.3 kg day-1), believed to be driven by proximity to industrial facilities and large populations (urban runoff). Finally, we estimate 4.9 kg of total PFAS (∑11 PFAS) were delivered to the Black Sea daily over Summer 2019.


Asunto(s)
Ácidos Alcanesulfónicos , Agua Potable , Fluorocarburos , Contaminantes Químicos del Agua , Humanos , Ríos , Agua Potable/análisis , Contaminantes Químicos del Agua/análisis , Monitoreo del Ambiente/métodos , Ácidos Alcanesulfónicos/análisis , Fluorocarburos/análisis , Estaciones del Año
15.
J Hazard Mater ; 455: 131486, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37172382

RESUMEN

Non-target analysis (NTA) employing high-resolution mass spectrometry (HRMS) coupled with liquid chromatography is increasingly being used to identify chemicals of biological relevance. HRMS datasets are large and complex making the identification of potentially relevant chemicals extremely challenging. As they are recorded in vendor-specific formats, interpreting them is often reliant on vendor-specific software that may not accommodate advancements in data processing. Here we present InSpectra, a vendor independent automated platform for the systematic detection of newly identified emerging chemical threats. InSpectra is web-based, open-source/access and modular providing highly flexible and extensible NTA and suspect screening workflows. As a cloud-based platform, InSpectra exploits parallel computing and big data archiving capabilities with a focus for sharing and community curation of HRMS data. InSpectra offers a reproducible and transparent approach for the identification, tracking and prioritisation of emerging chemical threats.

16.
J Hazard Mater ; 457: 131688, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37257384

RESUMEN

Effective monitoring tools, including passive samplers, are essential for the wide range of per- and polyfluoroalkyl substances (PFASs) in aquatic matrices. However, knowledge of the extent and mechanisms of PFASs sorption with sorbents in a passive sampling context is limited. To address this, sorption behavior of 45 anionic, neutral and zwitterionic PFASs ranging in perfluorocarbon chain length (C3-C16) and functional groups with 11 different commercial sorbents (cross-linked ß-cyclodextrin polymers, activated carbon, anion exchange (AE), cation exchange, hydrophilic-lipophilic balanced (HLB) and non-polar) was investigated. A broad range of equilibrium sorbent-MilliQ water (MQ) distribution coefficients (Kd) were observed (10-1.95 to 108.30 mL g-1). Similar sorbent types (e.g., various AE and HLB sorbents) exhibited very different sorption behavior, likely due to their different polymeric structures and relative importance of sorbate/sorbent interactions other than coulombic interactions. HLB and AE with hydroxyl functionalities are most effective for sampling of the full suite of PFASs. Reduced sorptive affinity was observed in the presence of matrix co-constituents in wastewater influent for most PFASs. HLB had the smallest reduction in log Kd in wastewater suggesting that these sorbents are appropriate for applications in complex matrices. Sufficient sorbent capacity was observed for linear uptake of many target analytes which facilitates passive sampling.

17.
Sci Total Environ ; 874: 162497, 2023 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-36863593

RESUMEN

Water resources are vulnerable to contamination from polar organic compounds (POCs) originating from sources such as wastewater effluent. Two configurations of a microporous polyethylene tube (MPT) passive sampler were investigated for the time-integrative detection and quantification of POCs in effluent. One configuration contained the polymeric reversed phase sorbent Strata-X (SX) and the other Strata-X suspended in agarose gel (SX-Gel). These were deployed for up to 29 days and analysed for forty-nine POCs including pesticides, pharmaceuticals and personal care products (PPCPs) together with illicit drugs. Complementary composite samples were collected on days 6, 12, 20 and 26 representing the previous 24 h. Thirty-eight contaminants were detected in composite samples and MPT extracts, with MPT sampling rates (Rs) for 11 pesticides and 9 PPCPs/drugs ranging from 0.81 to 10.32 mL d-1 in SX and 1.35-32.83 mL d-1 in SX-Gel. Half-times to equilibrium of contaminants with the SX and SX-Gel equipped samplers ranged from two days to >29 days. MPT (SX) samplers were also deployed at 10 wastewater treatment effluent discharge sites across Australia for 7 days (again with complementary composite samples), to validate the sampler performance under varying conditions. Extracts from these MPTs detected 48 contaminants in comparison with 46 in composite samples, with concentrations ranging from 0.1 to 138 ng mL-1. An advantage of the MPT was preconcentration of contaminants, resulting in extract levels often markedly above instrument analytical detection limits. The validation study demonstrated a high correlation between accumulated contaminant mass in the MPTs and wastewater concentrations from composite samples (r2 > 0.70, where concentrations in composite samples were > 3× LOD). The MPT sampler shows promise as a sensitive tool for detecting POCs at trace levels in wastewater effluent and also quantifying these levels if temporal concentration variations are not significant.

18.
Sci Total Environ ; 864: 161071, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36565860

RESUMEN

An upscaled passive sampler variant (diffusive hydrogel-based passive sampler; HPS) based on diffusive gradients in thin films for polar organic compounds (o-DGT) with seven times higher surface area (22.7 cm2) than a typical o-DGT sampler (3.14 cm2) was tested in several field studies. HPS performance was tested in situ within a calibration study in the treated effluent of a municipal wastewater treatment plant and in a verification study in the raw municipal wastewater influent. HPS sampled integratively for up to 14 days in the effluent, and 8 days in the influent. Sampling rates (Rs) were derived for 44 pharmaceuticals and personal care products, 3 perfluoroalkyl substances, 2 anticorrosives, and 21 pesticides and metabolites, ranging from 6 to 132 mL d-1. Robustness and repeatability of HPS deteriorated after exposures longer than 14 days due to microbial and physical damage of the diffusive agarose layer. In situ Rs values for the HPS can be applied to estimate the aqueous concentration of the calibrated polar organic compounds in wastewater within an uncertainty factor of four. When accepting this level of accuracy, the HPS can be applied for monitoring trends of organic micropollutants in wastewater.

19.
Environ Sci Technol ; 56(23): 16716-16725, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36383416

RESUMEN

Nanoplastics (NPs; <1 µm) have greater availability to marine organisms than microplastics (1-5000 µm). Understanding NP uptake and depuration in marine organisms intended for human consumption is imperative for food safety, but until now it has been limited due to analytical constraints. Oysters (Crassostrea gigas) were exposed to polystyrene NPs doped with palladium (Pd), allowing the measurements of their uptake into tissues by inductively coupled plasma mass spectrometry (ICP-MS) combined with electron microscopy. Oysters were exposed for 6 days (d) to "Smooth" or "Raspberry" NPs, followed by 30 d of depuration with the aim of assessing the NP concentration in C. gigas following exposure, inferring the accumulation and elimination rates, and understanding the clearance of Pd NPs during the depuration period. After 6 d, the most significant accumulation was found in the digestive gland (106.6 and 135.3 µg g-1 dw, for Smooth and Raspberry NPs, respectively) and showed the most evident depuration (elimination rate constant KSmooth = 2 d-1 and KRaspberry = 0.2 d-1). Almost complete depuration of the Raspberry NPs occurred after 30 d. While a post-harvesting depuration period of 24-48 h for oysters could potentially reduce the NP content by 75%, more research to validate these findings, including depuration studies of oysters from the field, is required to inform practices to reduce human exposure through consumption.


Asunto(s)
Crassostrea , Contaminantes Químicos del Agua , Humanos , Animales , Microplásticos , Plásticos , Poliestirenos
20.
Environ Sci Technol ; 56(19): 13774-13785, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36128767

RESUMEN

Bioplastics are materials that are biobased and/or biodegradable, but not necessarily both. Concerns about environmental plastic pollution are constantly growing with increasing demand for substituting fossil-based plastics with those made using renewable resource feedstocks. For many conventional bioplastics to completely decompose/degrade, they require specific environmental conditions that are rarely met in natural ecosystems, leading to rapid formation of micro-bioplastics. As global bioplastic production and consumption/use continue to increase, there is growing concern regarding the potential for environmental pollution from micro-bioplastics. However, the actual extent of their environmental occurrence and potential impacts remains unclear, and there is insufficient mass concentration-based quantitative data due to the lack of quantitative analytical methods. This study developed and validated an analytical method coupling pressurized liquid extraction and pyrolysis-gas chromatography-mass spectrometry combined with thermochemolysis to simultaneously identify and quantify five targeted micro-bioplastics (i.e., polylactic acid (PLA), polyhydroxyalkanoate, polybutylene succinate, polycaprolactone, and polybutylene adipate terephthalate (PBAT)) in environmental samples on a polymer-specific mass-based concentration. The recovery of spiked micro-bioplastics in environmental samples (biosolids) ranged from 74 to 116%. The limits of quantification for the target micro-bioplastics were between 0.02 and 0.05 mg/g. PLA and PBAT were commonly detected in wastewater, biosolids, and sediment samples at concentrations between 0.07 and 0.18 mg/g. The presented analytical method enables the accurate identification, quantification, and monitoring of micro-bioplastics in environmental samples. This study quantified five micro-bioplastic types in complex environmental samples for the first time, filling in gaps in our knowledge about bioplastic pollution and providing a useful methodology and important reference data for future research.


Asunto(s)
Polihidroxialcanoatos , Pirólisis , Adipatos/análisis , Biosólidos , Ecosistema , Cromatografía de Gases y Espectrometría de Masas , Plásticos/química , Poliésteres , Aguas Residuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA