Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Med Chem ; 65(22): 15433-15442, 2022 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-36356320

RESUMEN

Upregulation of the fibroblast growth factor receptor (FGFR) signaling pathway has been implicated in multiple cancer types, including cholangiocarcinoma and bladder cancer. Consequently, small molecule inhibition of FGFR has emerged as a promising therapy for patients suffering from these diseases. First-generation pan-FGFR inhibitors, while highly effective, suffer from several drawbacks. These include treatment-related hyperphosphatemia and significant loss of potency for the mutant kinases. Herein, we present the discovery and optimization of novel FGFR2/3 inhibitors that largely maintain potency for the common gatekeeper mutants and have excellent selectivity over FGFR1. A combination of meticulous structure-activity relationship (SAR) analysis, structure-based drug design, and medicinal chemistry rationale ultimately led to compound 29, a potent and selective FGFR2/3 inhibitor with excellent in vitro absorption, distribution, metabolism, excretion (ADME), and pharmacokinetics in rat. A pharmacodynamic study of a closely related compound established that maximum inhibition of downstream ERK phosphorylation could be achieved with no significant effect on serum phosphate levels relative to vehicle.


Asunto(s)
Neoplasias , Inhibidores de Proteínas Quinasas , Receptores de Factores de Crecimiento de Fibroblastos , Animales , Ratas , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/química , Transducción de Señal , Relación Estructura-Actividad , Receptores de Factores de Crecimiento de Fibroblastos/antagonistas & inhibidores , Receptores de Factores de Crecimiento de Fibroblastos/química , Receptores de Factores de Crecimiento de Fibroblastos/efectos de los fármacos
2.
Bioorg Med Chem Lett ; 69: 128782, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35537608

RESUMEN

11ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) has been identified as the primary enzyme responsible for the activation of hepatic cortisone to cortisol in specific peripheral tissues resulting in the concomitant antagonism of insulin action within these tissues. Dysregulation of 11ß-HSD1, particularly in adipose tissues, has been associated with metabolic syndrome and type 2 diabetes mellitus. Therefore, inhibition of 11ß-HSD1 with a small nonsteroidal molecule is therapeutically desirable. Implementation of a scaffold-hopping approach revealed a three-point pharmacophore for 11ß-HSD1 that was utilized to design a steroid mimetic scaffold. Reiterative optimization provided valuable insight into the bioactive conformation of our novel scaffold and led to the discovery of INCB13739. Clinical evaluation of INCB13739 confirmed for the first time that tissue-specific inhibition of 11ß-HSD1 in patients with type 2 diabetes mellitus was efficacious in controlling glucose levels and reducing cardiovascular risk factors.


Asunto(s)
Diabetes Mellitus Tipo 2 , Síndrome Metabólico , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 1/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Hidrocortisona/metabolismo , Síndrome Metabólico/metabolismo
3.
J Pharmacol Exp Ther ; 374(1): 211-222, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32345620

RESUMEN

The clinical use of first-generation phosphoinositide 3-kinase (PI3K)δ inhibitors in B-cell malignancies is hampered by hepatotoxicity, requiring dose reduction, treatment interruption, and/or discontinuation of therapy. In addition, potential molecular mechanisms by which resistance to this class of drugs occurs have not been investigated. Parsaclisib (INCB050465) is a potent and selective next-generation PI3Kδ inhibitor that differs in structure from first-generation PI3Kδ inhibitors and has shown encouraging anti-B-cell tumor activity and reduced hepatotoxicity in phase 1/2 clinical studies. Here, we present preclinical data demonstrating parsaclisib as a potent inhibitor of PI3Kδ with over 1000-fold selectivity against other class 1 PI3K isozymes. Parsaclisib directly blocks PI3K signaling-mediated cell proliferation in B-cell lines in vitro and in vivo and indirectly controls tumor growth by lessening immunosuppression through regulatory T-cell inhibition in a syngeneic lymphoma model. Diffuse large B-cell lymphoma cell lines overexpressing MYC were insensitive to proliferation blockade via PI3Kδ signaling inhibition by parsaclisib, but their proliferative activities were reduced by suppression of MYC gene transcription. Molecular structure analysis of the first- and next-generation PI3Kδ inhibitors combined with clinical observation suggests that hepatotoxicity seen with the first-generation inhibitors could result from a structure-related off-target effect. Parsaclisib is currently being evaluated in multiple phase 2 clinical trials as a therapy against various hematologic malignancies of B-cell origin (NCT03126019, NCT02998476, NCT03235544, NCT03144674, and NCT02018861). SIGNIFICANCE STATEMENT: The preclinical properties described here provide the mechanism of action and support clinical investigations of parsaclisib as a therapy for B-cell malignancies. MYC overexpression was identified as a resistance mechanism to parsaclisib in DLBCL cells, which may be useful in guiding further translational studies for the selection of patients with DLBCL who might benefit from PI3Kδ inhibitor treatment in future trials. Hepatotoxicity associated with first-generation PI3Kδ inhibitors may be an off-target effect of that class of compounds.


Asunto(s)
Hígado/efectos de los fármacos , Linfoma/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/efectos adversos , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Pirazoles/efectos adversos , Pirazoles/farmacología , Pirimidinas/efectos adversos , Pirimidinas/farmacología , Pirrolidinas/efectos adversos , Pirrolidinas/farmacología , Animales , Antineoplásicos/efectos adversos , Antineoplásicos/farmacología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Factores Inmunológicos/efectos adversos , Factores Inmunológicos/farmacología , Ratones , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Front Oncol ; 10: 598477, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33425754

RESUMEN

TYRO3, AXL, and MERTK constitute the TAM family of receptor tyrosine kinases, which play important roles in tumor growth, survival, cell adhesion, as well as innate immunity, phagocytosis, and immune-suppressive activity. Therefore, targeting both AXL and MERTK kinases may directly impact tumor growth and relieve immunosuppression. We describe here the discovery of INCB081776, a potent and selective dual inhibitor of AXL and MERTK that is currently in phase 1 clinical trials. In cellular assays, INCB081776 effectively blocked autophosphorylation of AXL or MERTK with low nanomolar half maximal inhibitory concentration values in tumor cells and Ba/F3 cells transfected with constitutively active AXL or MERTK. INCB081776 inhibited activation of MERTK in primary human macrophages and partially reversed M2 macrophage-mediated suppression of T-cell proliferation, which was associated with increased interferon-γ production. In vivo, the antitumor activity of INCB081776 was enhanced in combination with checkpoint blockade in syngeneic models, and resulted in increased proliferation of intratumoral CD4+ and CD8+ T cells. Finally, antitumor activity of INCB081776 was observed in a subset of sarcoma patient-derived xenograft models, which was linked with inhibition of phospho-AKT. These data support the potential therapeutic utility of INCB081776 as an immunotherapeutic agent capable of both enhancing tumor immune surveillance and blocking tumor cell survival mechanisms.

5.
ACS Med Chem Lett ; 10(11): 1554-1560, 2019 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-31749910

RESUMEN

A medicinal chemistry effort focused on identifying a structurally diverse candidate for phosphoinositide 3-kinase delta (PI3Kδ) led to the discovery of clinical candidate INCB050465 (20, parsaclisib). The unique structure of 20 contains a pyrazolopyrimidine hinge-binder in place of a purine motif that is present in other PI3Kδ inhibitors, such as idelalisib (1), duvelisib (2), and INCB040093 (3, dezapelisib). Parsaclisib (20) is a potent and highly selective inhibitor of PI3Kδ with drug-like ADME properties that exhibited an excellent in vivo profile as demonstrated through pharmacokinetic studies in rats, dogs, and monkeys and through pharmacodynamic and efficacy studies in a mouse Pfeiffer xenograft model.

6.
J Pharmacol Exp Ther ; 364(1): 120-130, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29127109

RESUMEN

Phosphatidylinositol 3-kinase delta (PI3Kδ) is a critical signaling molecule in B cells and is considered a target for development of therapies against various B cell malignancies. INCB040093 is a novel PI3Kδ small-molecule inhibitor and has demonstrated promising efficacy in patients with Hodgkin's lymphoma in clinical studies. In this study, we disclose the chemical structure and the preclinical activity of the compound. In biochemical assays, INCB040093 potently inhibits the PI3Kδ kinase, with 74- to >900-fold selectivity against other PI3K family members. In vitro and ex vivo studies using primary B cells, cell lines from B cell malignancies, and human whole blood show that INCB040093 inhibits PI3Kδ-mediated functions, including cell signaling and proliferation. INCB040093 has no significant effect on the growth of nonlymphoid cell lines and was less potent in assays that measure human T and natural killer cell proliferation and neutrophil and monocyte functions, suggesting that the impact of INCB040093 on the human immune system will likely be restricted to B cells. INCB040093 inhibits the production of macrophage-inflammatory protein-1ß (MIP-1beta) and tumor necrosis factor-ß (TNF-beta) from a B cell line, suggesting a potential effect on the tumor microenvironment. In vivo, INCB040093 demonstrates single-agent activity in inhibiting tumor growth and potentiates the antitumor growth effect of the clinically relevant chemotherapeutic agent, bendamustine, in the Pfeiffer cell xenograft model of non-Hodgkin's lymphoma. INCB040093 has a favorable exposure profile in rats and an acceptable safety margin in rats and dogs. Taken together, data presented in this report support the potential utility of orally administered INCB040093 in the treatment of B cell malignancies.


Asunto(s)
Antineoplásicos/farmacología , Linfoma no Hodgkin/tratamiento farmacológico , Neoplasias/tratamiento farmacológico , Inhibidores de las Quinasa Fosfoinosítidos-3 , Inhibidores de Proteínas Quinasas/farmacología , Animales , Linfocitos B/efectos de los fármacos , Linfocitos B/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Quimiocina CCL4/metabolismo , Perros , Femenino , Humanos , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/metabolismo , Linfoma no Hodgkin/metabolismo , Masculino , Ratones , Ratones SCID , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Neoplasias/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Ratas , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo
7.
Bioorg Med Chem Lett ; 19(13): 3525-30, 2009 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-19457660

RESUMEN

A serendipitous discovery that the metalloprotease binding profile of a novel class of 2-carboxamide-3-hydroxamic acid piperidines could be significantly attenuated by the modification of the unexplored P1 substituent enabled the design and synthesis of a novel 2-carboxamide-1-hydroxamic acid cyclohexyl scaffold core that exhibited excellent HER-2 potency and unprecedented MMP-selectivity that we believe would not have been possible via conventional P1' perturbations.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Antineoplásicos/síntesis química , Ácidos Hidroxámicos/síntesis química , Proteínas de la Membrana/metabolismo , Receptor ErbB-2/metabolismo , Proteína ADAM10 , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Diseño de Fármacos , Humanos , Ácidos Hidroxámicos/química , Ácidos Hidroxámicos/farmacología , Metaloproteinasa 2 de la Matriz/metabolismo , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato
8.
J Med Chem ; 50(4): 603-6, 2007 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-17256836

RESUMEN

The design, synthesis, evaluation, and identification of a novel class of (6S,7S)-N-hydroxy-6-carboxamide-5-azaspiro[2.5]octane-7-carboxamides as the first potent and selective inhibitors of human epidermal growth factor receptor-2 (HER-2) sheddase is described. Several compounds were identified that possess excellent pharmacodynamic and pharmacokinetic properties and were shown to decrease tumor size, cleaved HER-2 extracellular domain plasma levels, and potentiate the effects of the humanized anti-HER-2 monoclonal antibody (trastuzumab) in vivo in a HER-2 overexpressing cancer murine xenograft model.


Asunto(s)
Amidas/síntesis química , Antineoplásicos/síntesis química , Ácidos Hidroxámicos/síntesis química , Piperidinas/síntesis química , Receptor ErbB-2/antagonistas & inhibidores , Compuestos de Espiro/síntesis química , Administración Oral , Amidas/farmacocinética , Amidas/farmacología , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Humanos , Ácidos Hidroxámicos/farmacocinética , Ácidos Hidroxámicos/farmacología , Ratones , Conformación Molecular , Piperidinas/química , Piperidinas/farmacología , Compuestos de Espiro/química , Compuestos de Espiro/farmacología , Estereoisomerismo , Relación Estructura-Actividad , Trasplante Heterólogo , Trastuzumab
9.
Cancer Biol Ther ; 5(6): 657-64, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16627989

RESUMEN

Overexpression and activating mutations of ErbB family members have been implicated in the development and progression of a variety of tumor types. Cleavage of the HER2 receptor by an as yet unidentified ectodomain sheddase has been shown to liberate the HER2 extracellular domain (ECD) leaving a fragment with constitutive kinase activity that can provide ligand-independent growth and survival signals to the cell. This process is clinically relevant since HER2 ECD serum levels in metastatic breast cancer patients are associated with a poorer prognosis. Thus, inhibition of the HER2 sheddase may provide a novel therapeutic approach for breast cancer. We describe the use of transcriptional profiling, pharmacological and in vitro approaches to identify the major source of HER2 sheddase activity. Real-time PCR was used to identify those ADAM family members which were expressed in HER2 shedding cell lines. siRNAs that selectively inhibited ADAM10 expression reduced HER2 shedding. In addition, we profiled over 1000 small molecules for in vitro inhibition of a panel of ADAM and MMP proteins; a positive correlation was observed only between ADAM10 inhibition and reduction of HER2 ECD shedding in a cell based assay. Finally, in vitro studies demonstrate that in combination with low doses of Herceptin, selective ADAM10 inhibitors decrease proliferation in HER2 overexpressing cell lines while inhibitors, that do not inhibit ADAM10, have no impact. These results are consistent with ADAM10 being a major determinant of HER2 shedding, the inhibition of which, may provide a novel therapeutic approach for treating a variety of cancers with active HER2 signaling.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Neoplasias de la Mama/genética , Proteínas de la Membrana/metabolismo , Receptor ErbB-2/metabolismo , Proteína ADAM10 , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados , Antineoplásicos/farmacología , Secuencia de Bases , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/patología , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Reacción en Cadena de la Polimerasa , ARN Interferente Pequeño/genética , Trastuzumab
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA