Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biol Chem ; 300(1): 105512, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042486

RESUMEN

Aging presents fundamental health concerns worldwide; however, mechanisms underlying how aging is regulated are not fully understood. Here, we show that cartilage regulates aging by controlling phosphate metabolism via ectonucleotide pyrophosphatase/phosphodiesterase 1 (Enpp1). We newly established an Enpp1 reporter mouse, in which an EGFP-luciferase sequence was knocked-in at the Enpp1 gene start codon (Enpp1/EGFP-luciferase), enabling detection of Enpp1 expression in cartilage tissues of resultant mice. We then established a cartilage-specific Enpp1 conditional knockout mouse (Enpp1 cKO) by generating Enpp1 flox mice and crossing them with cartilage-specific type 2 collagen Cre mice. Relative to WT controls, Enpp1 cKO mice exhibited phenotypes resembling human aging, such as short life span, ectopic calcifications, and osteoporosis, as well as significantly lower serum pyrophosphate levels. We also observed significant weight loss and worsening of osteoporosis in Enpp1 cKO mice under phosphate overload conditions, similar to global Enpp1-deficient mice. Aging phenotypes seen in Enpp1 cKO mice under phosphate overload conditions were rescued by a low vitamin D diet, even under high phosphate conditions. These findings suggest overall that cartilage tissue plays an important role in regulating systemic aging via Enpp1.


Asunto(s)
Envejecimiento , Osteoporosis , Hidrolasas Diéster Fosfóricas , Pirofosfatasas , Animales , Humanos , Ratones , Envejecimiento/genética , Cartílago/metabolismo , Luciferasas , Ratones Noqueados , Hidrolasas Diéster Fosfóricas/metabolismo , Pirofosfatasas/genética , Pirofosfatasas/metabolismo
2.
Sci Rep ; 13(1): 21572, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38062130

RESUMEN

Osteosarcoma is rare but is the most common bone tumor. Diagnostic tools such as magnetic resonance imaging development of chemotherapeutic agents have increased the survival rate in osteosarcoma patients, although 5-year survival has plateaued at 70%. Thus, development of new treatment approaches is needed. Here, we report that IL-17, a proinflammatory cytokine, increases osteosarcoma mortality in a mouse model with AX osteosarcoma cells. AX cell transplantation into wild-type mice resulted in 100% mortality due to ectopic ossification and multi-organ metastasis. However, AX cell transplantation into IL-17-deficient mice significantly prolonged survival relative to controls. CD4-positive cells adjacent to osteosarcoma cells express IL-17, while osteosarcoma cells express the IL-17 receptor IL-17RA. Although AX cells can undergo osteoblast differentiation, as can patient osteosarcoma cells, IL-17 significantly inhibited that differentiation, indicating that IL-17 maintains AX cells in the undifferentiated state seen in malignant tumors. By contrast, IL-17RA-deficient mice transplanted with AX cells showed survival comparable to wild-type mice transplanted with AX cells. Biopsy specimens collected from osteosarcoma patients showed higher expression of IL-17RA compared to IL-17. These findings suggest that IL-17 is essential to maintain osteosarcoma cells in an undifferentiated state and could be a therapeutic target for suppressing tumorigenesis.


Asunto(s)
Neoplasias Óseas , Osteosarcoma , Humanos , Ratones , Animales , Receptores de Interleucina-17/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Osteosarcoma/patología , Diferenciación Celular , Neoplasias Óseas/patología
3.
Sci Rep ; 13(1): 20019, 2023 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-37973808

RESUMEN

Lumbar spinal stenosis (LSS) is a degenerative disease characterized by intermittent claudication and numbness in the lower extremities. These symptoms are caused by the compression of nerve tissue in the lumbar spinal canal. Ligamentum flavum (LF) hypertrophy and spinal epidural lipomatosis in the spinal canal are known to contribute to stenosis of the spinal canal: however, detailed mechanisms underlying LSS are still not fully understood. Here, we show that surgically harvested LFs from LSS patients exhibited significantly increased thickness when transthyretin (TTR), the protein responsible for amyloidosis, was deposited in LFs, compared to those without TTR deposition. Multiple regression analysis, which considered age and BMI, revealed a significant association between LF hypertrophy and TTR deposition in LFs. Moreover, TTR deposition in LF was also significantly correlated with epidural fat (EF) thickness based on multiple regression analyses. Mesenchymal cell differentiation into adipocytes was significantly stimulated by TTR in vitro. These results suggest that TTR deposition in LFs is significantly associated with increased LF hypertrophy and EF thickness, and that TTR promotes adipogenesis of mesenchymal cells. Therapeutic agents to prevent TTR deposition in tissues are currently available or under development, and targeting TTR could be a potential therapeutic approach to inhibit LSS development and progression.


Asunto(s)
Ligamento Amarillo , Estenosis Espinal , Humanos , Estenosis Espinal/complicaciones , Ligamento Amarillo/metabolismo , Prealbúmina/metabolismo , Canal Medular/metabolismo , Hipertrofia/metabolismo , Vértebras Lumbares/metabolismo
4.
PLoS One ; 18(11): e0293944, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37939095

RESUMEN

When ruptured, ligaments and tendons have limited self-repair capacity and rarely heal spontaneously. In the knee, the Anterior Cruciate Ligament (ACL) often ruptures during sports activities, causing functional impairment and requiring surgery using tendon grafts. Patients with insufficient time to recover before resuming sports risk re-injury. To develop more effective treatment, it is necessary to define mechanisms underlying ligament repair. For this, animal models can be useful, but mice are too small to create an ACL reconstruction model. Thus, we developed a transgenic rat model using control elements of Scleraxis (Scx), a transcription factor essential for ligament and tendon development, to drive GFP expression in order to localize Scx-expressing cells. As anticipated, Tg rats exhibited Scx-GFP in ACL during developmental but not adult stages. Interestingly, when we transplanted the flexor digitorum longus (FDP) tendon derived from adult Scx-GFP+ rats into WT adults, Scx-GFP was not expressed in transplanted tendons. However, tendons transplanted from adult WT rats into Scx-GFP rats showed upregulated Scx expression in tendon, suggesting that Scx-GFP+ cells are mobilized from tissues outside the tendon. Importantly, at 4 weeks post-surgery, Scx-GFP-expressing cells were more frequent within the grafted tendon when an ACL remnant was preserved (P group) relative to when it was not (R group) (P vs R groups (both n = 5), p<0.05), and by 6 weeks, biomechanical strength of the transplanted tendon was significantly increased if the remnant was preserved (P vsR groups (both n = 14), p<0.05). Scx-GFP+ cells increased in remnant tissue after surgery, suggesting remnant tissue is a source of Scx+ cells in grafted tendons. We conclude that the novel Scx-GFP Tg rat is useful to monitor emergence of Scx-positive cells, which likely contribute to increased graft strength after ACL reconstruction.


Asunto(s)
Lesiones del Ligamento Cruzado Anterior , Reconstrucción del Ligamento Cruzado Anterior , Humanos , Adulto , Ratas , Animales , Ratones , Ligamento Cruzado Anterior/cirugía , Tendones/cirugía , Lesiones del Ligamento Cruzado Anterior/cirugía , Articulación de la Rodilla/cirugía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA