Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Opt Express ; 31(22): 36096-36104, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-38017766

RESUMEN

Digital coherent transmission features a very large transmission bandwidth and has played a main role in core optical transmission networks. With the progress of semiconductor technologies, practical coherent transceivers with rates over 100 Gbaud are becoming feasible. With such advances, the transceiver components must have lower power consumption and lower costs, and it becomes important to know how each component contributes to the overall transmission performance. Here, to decompose the effects of noise factors in high-baud-rate DP-16QAM transmissions, we used the theoretical relationship between the bit error rate (BER) and noise-to-signal ratio (NSR) and performed linear analyses. The NSR could be decomposed into individual noise contributions according to dependences on the inverse signal and local photocurrents. The obtained parameters were shown to be useful for predicting required optical signal-to-noise ratio (ROSNR) characteristics.

2.
Front Plant Sci ; 12: 640141, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33868339

RESUMEN

Plants produce a variety of floral specialized (secondary) metabolites with roles in several physiological functions, including light-protection, attraction of pollinators, and protection against herbivores. Pigments and volatiles synthesized in the petal have been focused on and characterized as major chemical factors influencing pollination. Recent advances in plant metabolomics have revealed that the major floral specialized metabolites found in land plant species are hydroxycinnamates, phenolamides, and flavonoids albeit these are present in various quantities and encompass diverse chemical structures in different species. Here, we analyzed numerous floral specialized metabolites in 20 different Brassicaceae genotypes encompassing both different species and in the case of crop species different cultivars including self-compatible (SC) and self-incompatible (SI) species by liquid chromatography-mass spectrometry (LC-MS). Of the 228 metabolites detected in flowers among 20 Brassicaceae species, 15 metabolite peaks including one phenylacyl-flavonoids and five phenolamides were detected and annotated as key metabolites to distinguish SC and SI plant species, respectively. Our results provide a family-wide metabolic framework and delineate signatures for compatible and incompatible genotypes thereby providing insight into evolutionary aspects of floral metabolism in Brassicaceae species.

3.
Artículo en Inglés | MEDLINE | ID: mdl-26465469

RESUMEN

We studied the collective motion of particles forced to move along a circular path in water by utilizing an optical vortex. Their collective motion, including the spontaneous formation of clusters and their dissociation, was observed. The observed temporal patterns depend on the number of particles on the path and the variation of their sizes. The addition of particles with different sizes suppresses the dynamic formation and dissociation of clusters and promotes the formation of specific stationary clusters. These experimental findings are reproduced by numerical simulations that take into account the hydrodynamic interaction between the particles and the radial trapping force confining the particles to the circular path. A transition between stationary and nonstationary clustering of the particles was observed by varying their size ratio in the binary-size systems. Our simulation reveals that the transition can be either continuous or discontinuous depending on the number of different-size particles. This result suggests that the size distribution of particles has a significant effect on the collective behavior of self-propelled particles in viscous fluids.

4.
Biochemistry ; 49(49): 10381-93, 2010 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-21067162

RESUMEN

YddV from Escherichia coli (Ec) is a novel globin-coupled heme-based oxygen sensor protein displaying diguanylate cyclase activity in response to oxygen availability. In this study, we quantified the turnover numbers of the active [Fe(III), 0.066 min(-1); Fe(II)-O(2) and Fe(II)-CO, 0.022 min(-1)] [Fe(III), Fe(III)-protoporphyrin IX complex; Fe(II), Fe(II)-protoporphyrin IX complex] and inactive forms [Fe(II) and Fe(II)-NO, <0.01 min(-1)] of YddV for the first time. Our data indicate that the YddV reaction is the rate-determining step for two consecutive reactions coupled with phosphodiesterase Ec DOS activity on cyclic di-GMP (c-di-GMP) [turnover number of Ec DOS-Fe(II)-O(2), 61 min(-1)]. Thus, O(2) binding and the heme redox switch of YddV appear to be critical factors in the regulation of c-di-GMP homeostasis. The redox potential and autoxidation rate of heme of the isolated heme domain of YddV (YddV-heme) were determined to be -17 mV versus the standard hydrogen electrode and 0.0076 min(-1), respectively. The Fe(II) complexes of Y43A and Y43L mutant proteins (residues at the heme distal side of the isolated heme-bound globin domain of YddV) exhibited very low O(2) affinities, and thus, their Fe(II)-O(2) complexes were not detected on the spectra. The O(2) dissociation rate constant of the Y43W protein was >150 s(-1), which is significantly larger than that of the wild-type protein (22 s(-1)). The autoxidation rate constants of the Y43F and Y43W mutant proteins were 0.069 and 0.12 min(-1), respectively, which are also markedly higher than that of the wild-type protein. The resonance Raman frequencies representing ν(Fe-O(2)) (559 cm(-1)) of the Fe(II)-O(2) complex and ν(Fe-CO) (505 cm(-1)) of the Fe(II)-CO complex of Y43F differed from those (ν(Fe-O(2)), 565 cm(-1); ν(Fe-CO), 495 cm(-1)) of the wild-type protein, suggesting that Tyr43 forms hydrogen bonds with both O(2) and CO molecules. On the basis of the results, we suggest that Tyr43 located at the heme distal side is important for the O(2) recognition and stability of the Fe(II)-O(2) complex, because the hydroxyl group of the residue appears to interact electrostatically with the O(2) molecule bound to the Fe(II) complex in YddV. Our findings clearly support a role of Tyr in oxygen sensing, and thus modulation of overall conversion from GTP to pGpG via c-di-GMP catalyzed by YddV and Ec DOS, which may be applicable to other globin-coupled oxygen sensor enzymes.


Asunto(s)
Proteínas de Escherichia coli/química , Globinas/química , Hemoproteínas/química , Oxígeno/metabolismo , Liasas de Fósforo-Oxígeno/química , Tirosina/química , Secuencia de Aminoácidos , Sitios de Unión/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Compuestos Férricos/química , Compuestos Férricos/metabolismo , Globinas/genética , Globinas/metabolismo , Hemoproteínas/genética , Hemoproteínas/metabolismo , Ligandos , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Liasas de Fósforo-Oxígeno/genética , Liasas de Fósforo-Oxígeno/metabolismo , Estabilidad Proteica , Sistemas de Mensajero Secundario/genética , Tirosina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA