Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Neurooncol Adv ; 6(1): vdae062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38770220

RESUMEN

Background: Boron neutron capture therapy (BNCT) is a precise particle radiation therapy known for its unique cellular targeting ability. The development of innovative boron carriers is crucial for the advancement of BNCT technologies. Our previous study demonstrated the potential of PBC-IP administered via convection-enhanced delivery (CED) in an F98 rat glioma model. This approach significantly extended rat survival in neutron irradiation experiments, with half achieving long-term survival, akin to a cure, in a rat brain tumor model. Our commitment to clinical applicability has spurred additional nonclinical pharmacodynamic research, including an investigation into the effects of cannula position and the time elapsed post-CED administration. Methods: In comprehensive in vivo experiments conducted on an F98 rat brain tumor model, we meticulously examined the boron distribution and neutron irradiation experiments at various sites and multiple time intervals following CED administration. Results: The PBC-IP showed substantial efficacy for BNCT, revealing minimal differences in tumor boron concentration between central and peripheral CED administration, although a gradual decline in intratumoral boron concentration post-administration was observed. Therapeutic efficacy remained robust, particularly when employing cannula insertion at the tumor margin, compared to central injections. Even delayed neutron irradiation showed notable effectiveness, albeit with a slightly reduced survival period. These findings underscore the robust clinical potential of CED-administered PBC-IP in the treatment of malignant gliomas, offering adaptability across an array of treatment protocols. Conclusions: This study represents a significant leap forward in the quest to enhance BNCT for the management of malignant gliomas, opening promising avenues for clinical translation.

2.
Sci Rep ; 14(1): 8265, 2024 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594281

RESUMEN

Boron neutron capture therapy (BNCT) is a type of targeted particle radiation therapy with potential applications at the cellular level. Spinal cord gliomas (SCGs) present a substantial challenge owing to their poor prognosis and the lack of effective postoperative treatments. This study evaluated the efficacy of BNCT in a rat SCGs model employing the Basso, Beattie, and Bresnahan (BBB) scale to assess postoperative locomotor activity. We confirmed the presence of adequate in vitro boron concentrations in F98 rat glioma and 9L rat gliosarcoma cells exposed to boronophenylalanine (BPA) and in vivo tumor boron concentration 2.5 h after intravenous BPA administration. In vivo neutron irradiation significantly enhanced survival in the BNCT group when compared with that in the untreated group, with a minimal BBB scale reduction in all sham-operated groups. These findings highlight the potential of BNCT as a promising treatment option for SCGs.


Asunto(s)
Terapia por Captura de Neutrón de Boro , Neoplasias Encefálicas , Glioma , Neoplasias de la Médula Espinal , Ratas , Animales , Neoplasias Encefálicas/patología , Ratas Endogámicas F344 , Boro , Investigación Biomédica Traslacional , Compuestos de Boro/farmacología , Glioma/patología
3.
Biology (Basel) ; 12(3)2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36979069

RESUMEN

Integrin αvß3 is more highly expressed in high-grade glioma cells than in normal tissues. In this study, a novel boron-10 carrier containing maleimide-functionalized closo-dodecaborate (MID), serum albumin as a drug delivery system, and cyclic arginine-glycine-aspartate (cRGD) that can target integrin αvß3 was developed. The efficacy of boron neutron capture therapy (BNCT) targeting integrin αvß3 in glioma cells in the brain of rats using a cRGD-functionalized MID-albumin conjugate (cRGD-MID-AC) was evaluated. F98 glioma cells exposed to boronophenylalanine (BPA), cRGD-MID-AC, and cRGD + MID were used for cellular uptake and neutron-irradiation experiments. An F98 glioma-bearing rat brain tumor model was used for biodistribution and neutron-irradiation experiments after BPA or cRGD-MID-AC administration. BNCT using cRGD-MID-AC had a sufficient cell-killing effect in vitro, similar to that with BNCT using BPA. In biodistribution experiments, cRGD-MID-AC accumulated in the brain tumor, with the highest boron concentration observed 8 h after administration. Significant differences were observed between the untreated group and BNCT using cRGD-MID-AC groups in the in vivo neutron-irradiation experiments through the log-rank test. Long-term survivors were observed only in BNCT using cRGD-MID-AC groups 8 h after intravenous administration. These findings suggest that BNCT with cRGD-MID-AC is highly selective against gliomas through a mechanism that is different from that of BNCT with BPA.

4.
Cancers (Basel) ; 15(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36831378

RESUMEN

BACKGROUND: Boron neutron capture therapy (BNCT) has been adapted to high-grade gliomas (HG); however, some gliomas are refractory to BNCT using boronophenylalanine (BPA). In this study, the feasibility of BNCT targeting the 18 kDa translocator protein (TSPO) expressed in glioblastoma and surrounding environmental cells was investigated. METHODS: Three rat glioma cell lines, an F98 rat glioma bearing brain tumor model, DPA-BSTPG which is a boron-10 compound targeting TSPO, BPA, and sodium borocaptate (BSH) were used. TSPO expression was evaluated in the F98 rat glioma model. Boron uptake was assessed in three rat glioma cell lines and in the F98 rat glioma model. In vitro and in vivo neutron irradiation experiments were performed. RESULTS: DPA-BSTPG was efficiently taken up in vitro. The brain tumor has 16-fold higher TSPO expressions than its brain tissue. The compound biological effectiveness value of DPA-BSTPG was 8.43 to F98 rat glioma cells. The boron concentration in the tumor using DPA-BSTPG convection-enhanced delivery (CED) administration was approximately twice as high as using BPA intravenous administration. BNCT using DPA-BSTPG has significant efficacy over the untreated group. BNCT using a combination of BPA and DPA-BSTPG gained significantly longer survival times than using BPA alone. CONCLUSION: DPA-BSTPG in combination with BPA may provide the multi-targeted neutron capture therapy against HG.

5.
J Neuroendovasc Ther ; 16(3): 152-156, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-37502278

RESUMEN

Objective: We report a case of a ruptured aneurysm at the posterior inferior temporal artery (PITA) of the posterior cerebral artery (PCA) treated by intra-aneurysmal coil embolization. Case Presentation: A 93-year-old man presented with disturbance of consciousness. Angiography revealed a 3-mm aneurysm in the distal PITA of the left PCA. He was diagnosed with subarachnoid hemorrhage and intracerebral hemorrhage due to a ruptured aneurysm. This aneurysm was occluded by intra-aneurysmal coil embolization with preservation of the PITA. Conclusion: Distal PITA aneurysm of the PCA is rare. Complete occlusion and preservation of the parent artery were achieved by intra-aneurysmal coil embolization, which may be an effective therapeutic option for such aneurysms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA