RESUMEN
Stem rust is an important disease of cultivated oat (Avena sativa) caused by Puccinia graminis f. sp. avenae. In North America, host resistance is the primary strategy to control this disease and is conferred by a relatively small number of resistance genes. Pg2 is a widely deployed stem rust resistance gene that originates from cultivated oat. Oat breeders wish to develop cultivars with multiple Pg genes to slow the breakdown of single gene resistance, and often require DNA markers suited for marker-assisted selection. Our objectives were to (i) construct high density linkage maps for a major oat stem rust resistance gene using three biparental mapping populations, (ii) develop Kompetitive allele-specific PCR (KASP) assays for Pg2-linked single-nucleotide polymorphisms (SNPs), and (iii) test the prediction accuracy of those markers with a diverse panel of spring oat lines and cultivars. Genotyping-by-sequencing SNP markers linked to Pg2 were identified in an AC Morgan/CDC Morrison recombinant inbred line (RIL) population. Pg2-linked SNPs were then analyzed in an AC Morgan/RL815 F2 population and an AC Morgan/CDC Dancer RIL population. Linkage analysis identified a common location for Pg2 in all three populations on linkage group Mrg20 of the oat consensus genetic map. The most predictive markers were identified and converted to KASP assays for use in oat breeding programs. When used in combination, the KASP assays for the SNP loci avgbs2_126549.1.46 and avgbs_cluster_23819.1.27 were highly predictive of Pg2 status in panel of 54 oat breeding lines and cultivars.
Asunto(s)
Avena/genética , Basidiomycota , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Ligamiento Genético , Humanos , América del Norte , Enfermedades de las Plantas , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Crown rust, caused by Puccinia coronata f. sp. avenae Eriks. (Pca), is among the most important oat diseases resulting in significant yield losses in many growing regions. A gene-for-gene interaction is well established in this pathosystem and has been exploited by oat breeders to control crown rust. Pc39 is a seedling crown rust resistance gene that has been widely deployed in North American oat breeding. DNA markers are desired to accurately predict the specific Pc genes present in breeding germplasm. The objectives of the study were as follows: (i) to map Pc39 in two recombinant inbred line (RIL) populations (AC Assiniboia/MN841801 and AC Medallion/MN841801) and (ii) to identify single nucleotide polymorphism (SNP) markers for postulation of Pc39 in oat germplasm. Pc39 was mapped to a linkage group consisting of 16 SNP markers, which placed the gene on linkage group Mrg11 (chromosome 1C) of the oat consensus map. Pc39 cosegregated with SNP marker GMI_ES01_c12570_390 in the AC Assiniboia/MN841801 RIL population and was flanked by the SNP markers avgbs_126086.1.41 and GMI_ES15_c276_702, with genetic distances of 1.7 and 0.3 cM, respectively. In the AC Medallion/MN841801 RIL population, similar results were obtained but the genetic distances of the flanking markers were 0.4 and 0.4 cM, respectively. Kompetitive Allele-Specific PCR assays were successfully designed for Pc39-linked SNP loci. Two SNP loci defined a haplotype that accurately predicted Pc39 status in a diverse panel of oat germplasm and will be useful for marker-assisted selection in oat breeding.
Asunto(s)
Avena , Basidiomycota , Ligamiento Genético , Enfermedades de las Plantas , Polimorfismo de Nucleótido SimpleRESUMEN
KEY MESSAGE: SNP loci linked to the crown rust resistance gene Pc98 were identified by linkage analysis and KASP assays were developed for marker-assisted selection in breeding programs. Crown rust is among the most damaging diseases of oat and is caused by Puccinia coronata var. avenae f. sp. avenae (Urban and Marková) (Pca). Host resistance is the preferred method to prevent crown rust epidemics. Pc98 is a race-specific, seedling crown rust resistance gene obtained from the wild oat Avena sterilis accession CAV 1979 that is effective at all growth stages of oat. Virulence to Pc98 has been very low in the Pca populations that have been tested. The objectives of this study were to develop SNP markers linked to Pc98 for use in marker-assisted selection and to locate Pc98 on the oat consensus map. The Pc98 gene was mapped using F2:3 populations developed from the crosses Pc98/Bingo and Pc98/Kasztan, where Pc98 is a single-gene line carrying Pc98. Both populations were evaluated in seedling inoculation experiments. Pc98 was mapped relative to Kompetitive Allele-Specific PCR SNP markers in both populations, placing Pc98 on the Mrg20 linkage group of the consensus map. Pc98 was bracketed by two SNP markers GMI_ES22_c3052_382_kom399 and GMI_ES14_lrc18344_662_kom398 in the Pc98/Bingo mapping population with genetic distances of 0.9 cM and 0.3 cM, respectively. Pc98 co-segregated with four SNP markers in the Pc98/Kasztan population, and the closest flanking markers were GMI_DS_LB_6017_kom367 and avgbs2_153634.1.59_kom410 with genetic distances of 0.7 cM and 0.3 cM, respectively. Two SNP loci defined a haplotype that accurately predicted Pc98 status in a diverse group of oat germplasm, which will be valuable for marker-assisted selection of Pc98 in breeding of new oat cultivars.
Asunto(s)
Avena/genética , Avena/microbiología , Basidiomycota/fisiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Segregación Cromosómica/genética , Ligamiento Genético , Sitios Genéticos , Marcadores Genéticos , Haplotipos/genéticaRESUMEN
KEY MESSAGE: The widely deployed, oat stem rust resistance gene Pg13 was mapped by linkage analysis and association mapping, and KASP markers were developed for marker-assisted selection in breeding programs. Pg13 is one of the most extensively deployed stem rust resistance genes in North American oat cultivars. Identification of markers tightly linked to this gene will be useful for routine marker-assisted selection, identification of gene pyramids, and retention of the gene in backcrosses and three-way crosses. To this end, high-density linkage maps were constructed in four bi-parental mapping populations using SNP markers identified from 6K oat Infinium iSelect and genotyping-by-sequencing platforms. Additionally, genome-wide associations were identified using two sets of association panels consisting of diverse elite oat lines in one set and landrace accessions in the other. The results showed that Pg13 was located at approximately 67.7 cM on linkage group Mrg18 of the consensus genetic map. The gene co-segregated with the 7C-17A translocation breakpoint and with crown rust resistance gene Pc91. Co-segregating markers with the best prediction accuracy were identified at 67.7-68.5 cM on Mrg18. KASP assays were developed for linked SNP loci for use in oat breeding.
Asunto(s)
Avena/genética , Avena/microbiología , Basidiomycota/fisiología , Mapeo Cromosómico , Resistencia a la Enfermedad/genética , Genes de Plantas , Enfermedades de las Plantas/genética , Tallos de la Planta/microbiología , Segregación Cromosómica/genética , Estudios de Asociación Genética , Marcadores Genéticos , Haplotipos/genética , Enfermedades de las Plantas/microbiología , Tallos de la Planta/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Molecular mapping of crown rust resistance genes is important to effectively utilize these genes and improve breeding efficiency through marker-assisted selection. Pc45 is a major race-specific crown rust resistance gene initially identified in the wild hexaploid oat Avena sterilis in the early 1970s. This gene was transferred to cultivated oat (Avena sativa) and has been used as a differential for identification of crown rust races since 1974. Previous research identified an association between virulence to Pc45 and PcKM, a crown rust resistance gene in the varieties 'Kame' and 'Morton'. This study was undertaken to reveal the relationship between Pc45 and PcKMPc45 was studied in the crosses 'AC Morgan'/Pc45 and 'Kasztan'/Pc45, where Pc45 is the differential line carrying Pc45 F2 progenies and F2:3 families of both populations were inoculated with the crown rust isolate CR258 (race NTGG) and single gene segregation ratios were observed. SNP markers for PcKM were tested on these populations and linkage maps were generated. In addition, 17 newly developed SNP markers identified from genotyping-by-sequencing (GBS) data were mapped in these two populations, plus another three populations segregating for Pc45 or PcKMPc45 and PcKM mapped to the same location of Mrg08 (chromosome 12D) of the oat chromosome-anchored consensus map. These results strongly suggest that Pc45 and PcKM are the same resistance gene, but allelism (i.e., functionally different alleles of the same gene) or tight linkage (i.e., two tightly linked genes) cannot be ruled out based on the present data.
Asunto(s)
Avena/genética , Resistencia a Medicamentos/genética , Polimorfismo de Nucleótido Simple , Avena/inmunología , Avena/microbiología , Basidiomycota/patogenicidad , Genes de Plantas , Sitios de Carácter CuantitativoRESUMEN
BACKGROUND: Gibberella ear rot (GER) is one of the most economically important fungal diseases of maize in the temperate zone due to moldy grain contaminated with health threatening mycotoxins. To develop resistant genotypes and control the disease, understanding the host-pathogen interaction is essential. RESULTS: RNA-Seq-derived transcriptome profiles of fungal- and mock-inoculated developing kernel tissues of two maize inbred lines were used to identify differentially expressed transcripts and propose candidate genes mapping within GER resistance quantitative trait loci (QTL). A total of 1255 transcripts were significantly (P ≤ 0.05) up regulated due to fungal infection in both susceptible and resistant inbreds. A greater number of transcripts were up regulated in the former (1174) than the latter (497) and increased as the infection progressed from 1 to 2 days after inoculation. Focusing on differentially expressed genes located within QTL regions for GER resistance, we identified 81 genes involved in membrane transport, hormone regulation, cell wall modification, cell detoxification, and biosynthesis of pathogenesis related proteins and phytoalexins as candidate genes contributing to resistance. Applying droplet digital PCR, we validated the expression profiles of a subset of these candidate genes from QTL regions contributed by the resistant inbred on chromosomes 1, 2 and 9. CONCLUSION: By screening global gene expression profiles for differentially expressed genes mapping within resistance QTL regions, we have identified candidate genes for gibberella ear rot resistance on several maize chromosomes which could potentially lead to a better understanding of Fusarium resistance mechanisms.
Asunto(s)
Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/genética , Transcriptoma , Zea mays/genética , Fusarium/fisiología , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Genes de Plantas/genética , Gibberella/fisiología , Secuenciación de Nucleótidos de Alto Rendimiento , Interacciones Huésped-Patógeno , Endogamia , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética , Especificidad de la Especie , Zea mays/clasificación , Zea mays/microbiologíaRESUMEN
KEY MESSAGE: Unique and co-localized chromosomal regions affecting Gibberella ear rot disease resistance and correlated agronomic traits were identified in maize. Dissecting the mechanisms underlying resistance to Gibberella ear rot (GER) disease in maize provides insight towards more informed breeding. To this goal, we evaluated 410 recombinant inbred lines (RIL) for GER resistance over three testing years using silk channel and kernel inoculation techniques. RILs were also evaluated for agronomic traits like days to silking, husk cover, and kernel drydown rate. The RILs showed significant genotypic differences for all traits with above average to high heritability estimates. Significant (P < 0.01) but weak genotypic correlations were observed between disease severity and agronomic traits, indicating the involvement of agronomic traits in disease resistance. Common QTLs were detected for GER resistance and kernel drydown rate, suggesting the existence of pleiotropic genes that could be exploited to improve both traits at the same time. The QTLs identified for silk and kernel resistance shared some common regions on chromosomes 1, 2, and 8 and also had some regions specific to each tissue on chromosomes 9 and 10. Thus, effective GER resistance breeding could be achieved by considering screening methods that allow exploitation of tissue-specific disease resistance mechanisms and include kernel drydown rate either in an index or as indirect selection criterion.