Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Arch Pathol Lab Med ; 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38797720

RESUMEN

CONTEXT.­: The National Institutes of Health Genotype-Tissue Expression (GTEx) project was developed to elucidate how genetic variation influences gene expression in multiple normal tissues procured from postmortem donors. OBJECTIVE.­: To provide critical insight into a biospecimen's suitability for subsequent analysis, each biospecimen underwent quality assessment measures that included evaluation for underlying disease and potential effects introduced by preanalytic factors. DESIGN.­: Electronic images of each tissue collected from nearly 1000 postmortem donors were evaluated by board-certified pathologists for the extent of autolysis, tissue purity, and the type and abundance of any extraneous tissue. Tissue-specific differences in the severity of autolysis and RNA integrity were evaluated, as were potential relationships between these markers and the duration of postmortem interval and rapidity of death. RESULTS.­: Tissue-specific challenges in the procurement and preservation of the nearly 30 000 tissue specimens collected during the GTEx project are summarized. Differences in the degree of autolysis and RNA integrity number were observed among the 40 tissue types evaluated, and tissue-specific susceptibilities to the duration of postmortem interval and rapidity of death were observed. CONCLUSIONS.­: Ninety-five percent of tissues were of sufficient quality to support RNA sequencing analysis. Biospecimens, annotated whole slide images, de-identified clinical data, and genomic data generated for GTEx represent a high-quality and comprehensive resource for the scientific community that has contributed to its use in approximately 1695 articles. Biospecimens and data collected under the GTEx project are available via the GTEx portal and authorized access to the Database of Genotypes and Phenotypes; procedures and whole slide images are available from the National Cancer Institute.

2.
Int J Radiat Oncol Biol Phys ; 105(4): 698-712, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31381960

RESUMEN

The advent of affordable and rapid next-generation DNA sequencing technology, along with the US Supreme Court ruling invalidating gene patents, has led to a deluge of germline and tumor genetic variant tests that are being rapidly incorporated into clinical cancer decision-making. A major concern for clinicians is whether the presence of germline mutations may increase the risk of radiation toxicity or secondary malignancies. Because scarce clinical data exist to inform decisions at this time, the American Society for Radiation Oncology convened a group of radiation science experts and clinicians to summarize potential issues, review relevant data, and provide guidance for adult patients and their care teams regarding the impact, if any, that genetic testing should have on radiation therapy recommendations. During the American Society for Radiation Oncology workshop, several main points emerged, which are discussed in this manuscript: (1) variants of uncertain significance should be considered nondeleterious until functional genomic data emerge to demonstrate otherwise; (2) possession of germline alterations in a single copy of a gene critical for radiation damage responses does not necessarily equate to increased risk of radiation-induced toxicity; (3) deleterious ataxia-telangiesctasia gene mutations may modestly increase second cancer risk after radiation therapy, and thus follow-up for these patients after indicated radiation therapy should include second cancer screening; (4) conveying to patients the difference between relative and absolute risk is critical to decision-making; and (5) more work is needed to assess the impact of tumor somatic alterations on the probability of response to radiation therapy and the potential for individualization of radiation doses. Data on radiosensitivity related to specific genetic mutations is also briefly discussed.


Asunto(s)
Pruebas Genéticas , Mutación , Neoplasias/genética , Neoplasias/radioterapia , Oncólogos de Radiación , Tolerancia a Radiación/genética , Adulto , Ataxia Telangiectasia/genética , Proteínas de la Ataxia Telangiectasia Mutada/genética , Toma de Decisiones Clínicas , Consenso , Reparación del ADN/genética , Genes BRCA1 , Genes BRCA2 , Variación Genética , Mutación de Línea Germinal , Encuestas de Atención de la Salud , Heterocigoto , Humanos , Neoplasias Inducidas por Radiación/genética , Neoplasias Primarias Secundarias/genética , Síndrome , Terminología como Asunto
3.
J Pers Med ; 5(1): 22-9, 2015 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-25809799

RESUMEN

Evaluation of how genetic mutations or variability can directly affect phenotypic outcomes, the development of disease, or determination of a tailored treatment protocol is fundamental to advancing personalized medicine. To understand how a genotype affects gene expression and specific phenotypic traits, as well as the correlative and causative associations between such, the Genotype-Tissue Expression (GTEx) Project was initiated The GTEx collection of biospecimens and associated clinical data links extensive clinical data with genotype and gene expression data to provide a wealth of data and resources to study the underlying genetics of normal physiology. These data will help inform personalized medicine through the identification of normal variation that does not contribute to disease. Additionally, these data can lead to insights into how gene variation affects pharmacodynamics and individualized responses to therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA