Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 14: 1146454, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37152954

RESUMEN

Adipose tissue inflammation and insulin resistance are hallmarks in the development of metabolic diseases resulting from overweight and obesity, such as type 2 diabetes and non-alcoholic fatty liver disease. In obesity, adipocytes predominantly secrete proinflammatory adipokines that further promote adipose tissue dysfunction with negative effects on local and systemic insulin sensitivity. Expression of the serpin vaspin (SERPINA12) is also increased in obesity and type 2 diabetes, but exhibits compensatory roles in inflammation and insulin resistance. This has in part been demonstrated using vaspin-transgenic mice. We here report a new mouse line (h-vaspinTG) with transgenic expression of human vaspin in adipose tissue that reaches vaspin concentrations three orders of magnitude higher than wild type controls (>200 ng/ml). Phenotyping under chow and high-fat diet conditions included glucose-tolerance tests, measurements of energy expenditure and circulating parameters, adipose tissue and liver histology. Also, ex vivo glucose uptake in isolated adipocytes and skeletal muscle was analyzed in h-vaspinTG and littermate controls. The results confirmed previous findings, revealing a strong reduction in diet-induced weight gain, fat mass, hyperinsulinemia, -glycemia and -cholesterolemia as well as fatty liver. Insulin sensitivity in adipose tissue and muscle was not altered. The h-vaspinTG mice showed increased energy expenditure under high fat diet conditions, that may explain reduced weight gain and overall metabolic improvements. In conclusion, this novel human vaspin-transgenic mouse line will be a valuable research tool to delineate whole-body, tissue- and cell-specific effects of vaspin in health and disease.


Asunto(s)
Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Enfermedad del Hígado Graso no Alcohólico , Serpinas , Humanos , Ratones , Animales , Dieta Alta en Grasa/efectos adversos , Ratones Transgénicos , Obesidad/genética , Obesidad/metabolismo , Inflamación/metabolismo , Aumento de Peso , Metabolismo Energético/genética , Serpinas/genética , Adipoquinas/metabolismo
2.
Int J Mol Sci ; 23(17)2022 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36077184

RESUMEN

Phospholipid scramblase 4 (PLSCR4) is a member of a conserved enzyme family with high relevance for the remodeling of phospholipid distribution in the plasma membrane and the regulation of cellular signaling. While PLSCR1 and -3 are involved in the regulation of adipose-tissue expansion, the role of PLSCR4 is so far unknown. PLSCR4 is significantly downregulated in an adipose-progenitor-cell model of deficiency for phosphatase and tensin homolog (PTEN). PTEN acts as a tumor suppressor and antagonist of the growth and survival signaling phosphoinositide 3-kinase (PI3K)/AKT cascade by dephosphorylating phosphatidylinositol-3,4,5-trisphosphate (PIP3). Patients with PTEN germline deletion frequently develop lipomas. The underlying mechanism for this aberrant adipose-tissue growth is incompletely understood. PLSCR4 is most highly expressed in human adipose tissue, compared with other phospholipid scramblases, suggesting a specific role of PLSCR4 in adipose-tissue biology. In cell and mouse models of lipid accumulation, we found PLSCR4 to be downregulated. We observed increased adipogenesis in PLSCR4-knockdown adipose progenitor cells, while PLSCR4 overexpression attenuated lipid accumulation. PLSCR4 knockdown was associated with increased PIP3 levels and the activation of AKT. Our results indicated that PLSCR4 is a regulator of PI3K/AKT signaling and adipogenesis and may play a role in PTEN-associated adipose-tissue overgrowth and lipoma formation.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas de Transferencia de Fosfolípidos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Adipocitos/metabolismo , Animales , Humanos , Ratones , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositoles , Proteínas de Transferencia de Fosfolípidos/genética
3.
Am J Med Genet C Semin Med Genet ; 190(3): 279-288, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35923129

RESUMEN

Kidney stone disease (KSD) is a prevalent condition associated with high morbidity, frequent recurrence, and progression to chronic kidney disease (CKD). The etiology is multifactorial, depending on environmental and genetic factors. Although monogenic KSD is frequent in children, unbiased prevalence data of heritable forms in adults is scarce. Within 2 years of recruitment, all patients hospitalized for urological kidney stone intervention at our center were consecutively enrolled for targeted next generation sequencing (tNGS). Additionally, clinical and metabolic assessments were performed for genotype-phenotype analyses. The cohort comprised 155 (66%) males and 81 (34%) females, with a mean age at first stone of 47 years (4-86). The diagnostic yield of tNGS was 6.8% (16/236), with cystinuria (SLC3A1, SLC7A9), distal renal tubular acidosis (SLC4A1), and renal phosphate wasting (SLC34A1, SLC9A3R1) as underlying hereditary disorders. While metabolic syndrome traits were associated with late-onset KSD, hereditary KSD was associated with increased disease severity in terms of early-onset, frequent recurrence, mildly impaired kidney function, and common bilateral affection. By employing systematic genetic analysis to a less biased cohort of common adult kidney stone formers, we demonstrate its diagnostic value for establishing the underlying disorder in a distinct proportion. Factors determining pretest probability include age at first stone (<40 years), frequent recurrence, mild CKD, and bilateral KSD.


Asunto(s)
Cálculos Renales , Insuficiencia Renal Crónica , Masculino , Femenino , Humanos , Cálculos Renales/genética , Cálculos Renales/diagnóstico , Pruebas Genéticas , Fenotipo , Probabilidad
4.
Biochem Biophys Res Commun ; 604: 57-62, 2022 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-35290761

RESUMEN

Small integral membrane protein 10 like 1 (SMIM10L1) was identified by RNA sequencing as the most significantly downregulated gene in Phosphatase and Tensin Homologue (PTEN) knockdown adipose progenitor cells (APCs). PTEN is a tumor suppressor that antagonizes the growth promoting Phosphoinositide 3-kinase (PI3K)/AKT/mechanistic Target of Rapamycin (mTOR) cascade. Diseases caused by germline pathogenic variants in PTEN are summarized as PTEN Hamartoma Tumor Syndrome (PHTS). This overgrowth syndrome is associated with lipoma formation, especially in pediatric patients. The mechanisms underlying this adipose tissue dysfunction remain elusive. We observed that SMIM10L1 downregulation in APCs led to an enhanced adipocyte differentiation in two- and three-dimensional cell culture and increased expression of adipogenesis markers. Furthermore, SMIM10L1 knockdown cells showed a decreased expression of PTEN, pointing to a mutual crosstalk between PTEN and SMIM10L1. In line with these observations, SMIM10L1 knockdown cells showed increased activation of PI3K/AKT/mTOR signaling and concomitantly increased expression of the adipogenic transcription factor SREBP1. We computationally predicted an α-helical structure and membrane association of SMIM10L1. These results support a specific role for SMIM10L1 in regulating adipogenesis, potentially by increasing PI3K/AKT/mTOR signaling, which might be conducive to lipoma formation in pediatric patients with PHTS.


Asunto(s)
Síndrome de Hamartoma Múltiple , Lipoma , Niño , Humanos , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Regulación hacia Abajo , Síndrome de Hamartoma Múltiple/genética , Lipoma/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Fosfatidilinositol 3-Quinasa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Células Madre/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
5.
Gut ; 71(11): 2179-2193, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-34598978

RESUMEN

OBJECTIVE: Human white adipose tissue (AT) is a metabolically active organ with distinct depot-specific functions. Despite their locations close to the gastrointestinal tract, mesenteric AT and epiploic AT (epiAT) have only scarcely been investigated. Here, we aim to characterise these ATs in-depth and estimate their contribution to alterations in whole-body metabolism. DESIGN: Mesenteric, epiploic, omental and abdominal subcutaneous ATs were collected from 70 patients with obesity undergoing Roux-en-Y gastric bypass surgery. The metabolically well-characterised cohort included nine subjects with insulin sensitive (IS) obesity, whose AT samples were analysed in a multiomics approach, including methylome, transcriptome and proteome along with samples from subjects with insulin resistance (IR) matched for age, sex and body mass index (n=9). Findings implying differences between AT depots in these subgroups were validated in the entire cohort (n=70) by quantitative real-time PCR. RESULTS: While mesenteric AT exhibited signatures similar to those found in the omental depot, epiAT was distinct from all other studied fat depots. Multiomics allowed clear discrimination between the IS and IR states in all tissues. The highest discriminatory power between IS and IR was seen in epiAT, where profound differences in the regulation of developmental, metabolic and inflammatory pathways were observed. Gene expression levels of key molecules involved in AT function, metabolic homeostasis and inflammation revealed significant depot-specific differences with epiAT showing the highest expression levels. CONCLUSION: Multi-omics epiAT signatures reflect systemic IR and obesity subphenotypes distinct from other fat depots. Our data suggest a previously unrecognised role of human epiploic fat in the context of obesity, impaired insulin sensitivity and related diseases.


Asunto(s)
Resistencia a la Insulina , Tejido Adiposo/metabolismo , Humanos , Insulina/metabolismo , Resistencia a la Insulina/genética , Obesidad/genética , Obesidad/metabolismo , Proteoma/metabolismo
6.
J Biol Chem ; 297(2): 100968, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34273354

RESUMEN

The tumor suppressor phosphatase and tensin homolog (PTEN) negatively regulates the insulin signaling pathway. Germline PTEN pathogenic variants cause PTEN hamartoma tumor syndrome (PHTS), associated with lipoma development in children. Adipose progenitor cells (APCs) lose their capacity to differentiate into adipocytes during continuous culture, whereas APCs from lipomas of patients with PHTS retain their adipogenic potential over a prolonged period. It remains unclear which mechanisms trigger this aberrant adipose tissue growth. To investigate the role of PTEN in adipose tissue development, we performed functional assays and RNA-Seq of control and PTEN knockdown APCs. Reduction of PTEN levels using siRNA or CRISPR led to enhanced proliferation and differentiation of APCs. Forkhead box protein O1 (FOXO1) transcriptional activity is known to be regulated by insulin signaling, and FOXO1 was downregulated at the mRNA level while its inactivation through phosphorylation increased. FOXO1 phosphorylation initiates the expression of the lipogenesis-activating transcription factor sterol regulatory element-binding protein 1 (SREBP1). SREBP1 levels were higher after PTEN knockdown and may account for the observed enhanced adipogenesis. To validate this, we overexpressed constitutively active FOXO1 in PTEN CRISPR cells and found reduced adipogenesis, accompanied by SREBP1 downregulation. We observed that PTEN CRISPR cells showed less senescence compared with controls and the senescence marker CDKN1A (p21) was downregulated in PTEN knockdown cells. Cellular senescence was the most significantly enriched pathway found in RNA-Seq of PTEN knockdown versus control cells. These results provide evidence that PTEN is involved in the regulation of APC proliferation, differentiation, and senescence, thereby contributing to aberrant adipose tissue growth in patients with PHTS.


Asunto(s)
Tejido Adiposo/patología , Diferenciación Celular , Proliferación Celular , Senescencia Celular , Lipoma/patología , Células Madre Mesenquimatosas/patología , Fosfohidrolasa PTEN/metabolismo , Tejido Adiposo/metabolismo , Células Cultivadas , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Humanos , Lipoma/metabolismo , Células Madre Mesenquimatosas/metabolismo , Fosfohidrolasa PTEN/genética , Transducción de Señal
7.
Sci Rep ; 10(1): 10240, 2020 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-32581226

RESUMEN

The differential associations of adipose depots with metabolic risk during obesity have been proposed to be controlled by environmental and genetic factors. We evaluated the regional differences in transcriptome signatures between abdominal (aSAT) and gluteal subcutaneous adipose tissue (gSAT) in obese black South African women and tested the hypothesis that 12-week exercise training alters gene expression patterns in a depot-specific manner. Twelve young women performed 12-weeks of supervised aerobic and resistance training. Pre- and post-intervention measurements included peak oxygen consumption (VO2peak), whole-body composition and unbiased gene expression analysis of SAT depots. VO2peak increased, body weight decreased, and body fat distribution improved with exercise training (p < 0.05). The expression of 15 genes, mainly associated with embryonic development, differed between SAT depots at baseline, whereas 318 genes were differentially expressed post-training (p < 0.05). Four developmental genes were differentially expressed between these depots at both time points (HOXA5, DMRT2, DMRT3 and CSN1S1). Exercise training induced changes in the expression of genes associated with immune and inflammatory responses, and lipid metabolism in gSAT, and muscle-associated processes in aSAT. This study showed differences in developmental processes regulating SAT distribution and expandability of distinct depots, and depot-specific adaptation to exercise training in black South African women with obesity.


Asunto(s)
Población Negra/genética , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , Grasa Intraabdominal/química , Obesidad/rehabilitación , Grasa Subcutánea/química , Adulto , Nalgas , Proteínas de Unión al ADN/genética , Ejercicio Físico , Terapia por Ejercicio , Femenino , Regulación de la Expresión Génica , Proteínas de Homeodominio/genética , Humanos , Obesidad/genética , Obesidad/metabolismo , Especificidad de Órganos , Oxígeno/metabolismo , Entrenamiento de Fuerza , Factores de Transcripción/genética , Adulto Joven
8.
Artículo en Inglés | MEDLINE | ID: mdl-32273869

RESUMEN

Subcutaneous (sc) and visceral (vis) adipose tissue (AT) contribute to the variability in pathophysiological consequences of obesity and adverse fat distribution. To gain insights into the molecular mechanisms distinguishing vis and sc fat, we compared the transcriptome during differentiation of immortalized adipocytes from murine epididymal (epi) and inguinal (ing) AT. RNA was extracted on different days of adipogenesis (-2, 0, 2, 4, 6, 8) and analyzed using Clariom™ D mouse assays (Affymetrix) covering >214,900 transcripts in >66,100 genes. Transcript Time Course Analysis revealed 137 differentially expressed genes. The top genes with most divergent expression dynamics included developmental genes like Alx1, Lhx8, Irx1/2, Hoxc10, Hoxa5/10, and Tbx5/15. According to pathway analysis the majority of the genes were enriched in pathways related to AT development. Finally, in paired samples of human vis and sc AT (N = 63), several of these genes exhibited depot-specific variability in expression which correlated closely with body mass index and/or waist-to-hip ratio. In conclusion, intrinsically programmed differences in gene expression patterns during adipogenesis suggest that fat depot specific regulation of adipogenesis contributes to individual risk of obesity.


Asunto(s)
Adipogénesis/genética , Tejido Adiposo/crecimiento & desarrollo , Tejido Adiposo/metabolismo , Obesidad , Adulto , Anciano , Animales , Animales Recién Nacidos , Estudios de Casos y Controles , Células Cultivadas , Femenino , Regulación del Desarrollo de la Expresión Génica , Humanos , Masculino , Ratones , Persona de Mediana Edad , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Delgadez/genética , Delgadez/metabolismo , Delgadez/patología
9.
Gigascience ; 8(2)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30535196

RESUMEN

BACKGROUND: Lacerta viridis and Lacerta bilineata are sister species of European green lizards (eastern and western clades, respectively) that, until recently, were grouped together as the L. viridis complex. Genetic incompatibilities were observed between lacertid populations through crossing experiments, which led to the delineation of two separate species within the L. viridis complex. The population history of these sister species and processes driving divergence are unknown. We constructed the first high-quality de novo genome assemblies for both L. viridis and L. bilineata through Illumina and PacBio sequencing, with annotation support provided from transcriptome sequencing of several tissues. To estimate gene flow between the two species and identify factors involved in reproductive isolation, we studied their evolutionary history, identified genomic rearrangements, detected signatures of selection on non-coding RNA, and on protein-coding genes. FINDINGS: Here we show that gene flow was primarily unidirectional from L. bilineata to L. viridis after their split at least 1.15 million years ago. We detected positive selection of the non-coding repertoire; mutations in transcription factors; accumulation of divergence through inversions; selection on genes involved in neural development, reproduction, and behavior, as well as in ultraviolet-response, possibly driven by sexual selection, whose contribution to reproductive isolation between these lacertid species needs to be further evaluated. CONCLUSION: The combination of short and long sequence reads resulted in one of the most complete lizard genome assemblies. The characterization of a diverse array of genomic features provided valuable insights into the demographic history of divergence among European green lizards, as well as key species differences, some of which are candidates that could have played a role in speciation. In addition, our study generated valuable genomic resources that can be used to address conservation-related issues in lacertids.


Asunto(s)
Evolución Molecular , Genoma , Lagartos/genética , Animales , Femenino , Genómica , Masculino , Análisis de Secuencia de ADN , Análisis de Secuencia de ARN
10.
Stem Cells Int ; 2018: 5692840, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30210551

RESUMEN

Recent advances in the stem cell field allow to obtain many human tissues in vitro. However, hepatic differentiation of induced pluripotent stem cells (iPSCs) still remains challenging. Hepatocyte-like cells (HLCs) obtained after differentiation resemble more fetal liver hepatocytes. MicroRNAs (miRNA) play an important role in the differentiation process. Here, we analysed noncoding RNA profiles from the last stages of differentiation and compare them to hepatocytes. Our results show that HLCs maintain an epithelial character and express miRNA which can block hepatocyte maturation by inhibiting the epithelial-mesenchymal transition (EMT). Additionally, we identified differentially expressed small nucleolar RNAs (snoRNAs) and discovered novel noncoding RNA (ncRNA) genes.

11.
BMC Genomics ; 17(1): 969, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27881081

RESUMEN

BACKGROUND: Small nucleolar RNAs (snoRNAs) are one of the most ancient families amongst non-protein-coding RNAs. They are ubiquitous in Archaea and Eukarya but absent in bacteria. Their main function is to target chemical modifications of ribosomal RNAs. They fall into two classes, box C/D snoRNAs and box H/ACA snoRNAs, which are clearly distinguished by conserved sequence motifs and the type of chemical modification that they govern. Similarly to microRNAs, snoRNAs appear in distinct families of homologs that affect homologous targets. In animals, snoRNAs and their evolution have been studied in much detail. In plants, however, their evolution has attracted comparably little attention. RESULTS: In order to chart the phylogenetic distribution of individual snoRNA families in plants, we applied a sophisticated approach for identifying homologs of known plant snoRNAs across the plant kingdom. In response to the relatively fast evolution of snoRNAs, information on conserved sequence boxes, target sequences, and secondary structure is combined to identify additional snoRNAs. We identified 296 families of snoRNAs in 24 species and traced their evolution throughout the plant kingdom. Many of the plant snoRNA families comprise paralogs. We also found that targets are well-conserved for most snoRNA families. CONCLUSIONS: The sequence conservation of snoRNAs is sufficient to establish homologies between phyla. The degree of this conservation tapers off, however, between land plants and algae. Plant snoRNAs are frequently organized in highly conserved spatial clusters. As a resource for further investigations we provide carefully curated and annotated alignments for each snoRNA family under investigation.


Asunto(s)
Familia de Multigenes , Filogenia , Plantas/clasificación , Plantas/genética , ARN de Planta/genética , ARN Nucleolar Pequeño/genética , Secuencia de Bases , Análisis por Conglomerados , Biología Computacional/métodos , Secuencia Conservada , Bases de Datos de Ácidos Nucleicos , Evolución Molecular
12.
Nucleic Acids Res ; 44(11): 5068-82, 2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27174936

RESUMEN

Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs that guide the post-transcriptional processing of other non-coding RNAs (mostly ribosomal RNAs), but have also been implicated in processes ranging from microRNA-dependent gene silencing to alternative splicing. In order to construct an up-to-date catalog of human snoRNAs we have combined data from various databases, de novo prediction and extensive literature review. In total, we list more than 750 curated genomic loci that give rise to snoRNA and snoRNA-like genes. Utilizing small RNA-seq data from the ENCODE project, our study characterizes the plasticity of snoRNA expression identifying both constitutively as well as cell type specific expressed snoRNAs. Especially, the comparison of malignant to non-malignant tissues and cell types shows a dramatic perturbation of the snoRNA expression profile. Finally, we developed a high-throughput variant of the reverse-transcriptase-based method for identifying 2'-O-methyl modifications in RNAs termed RimSeq. Using the data from this and other high-throughput protocols together with previously reported modification sites and state-of-the-art target prediction methods we re-estimate the snoRNA target RNA interaction network. Our current results assign a reliable modification site to 83% of the canonical snoRNAs, leaving only 76 snoRNA sequences as orphan.


Asunto(s)
Perfilación de la Expresión Génica , Procesamiento Postranscripcional del ARN , ARN Nucleolar Pequeño , Transcriptoma , Análisis por Conglomerados , Biología Computacional/métodos , Bases de Datos de Ácidos Nucleicos , Regulación de la Expresión Génica , Humanos , Anotación de Secuencia Molecular , Conformación de Ácido Nucleico , ARN no Traducido
13.
PLoS One ; 10(3): e0121797, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25822729

RESUMEN

Here we present the results of a large-scale bioinformatics annotation of non-coding RNA loci in 48 avian genomes. Our approach uses probabilistic models of hand-curated families from the Rfam database to infer conserved RNA families within each avian genome. We supplement these annotations with predictions from the tRNA annotation tool, tRNAscan-SE and microRNAs from miRBase. We identify 34 lncRNA-associated loci that are conserved between birds and mammals and validate 12 of these in chicken. We report several intriguing cases where a reported mammalian lncRNA, but not its function, is conserved. We also demonstrate extensive conservation of classical ncRNAs (e.g., tRNAs) and more recently discovered ncRNAs (e.g., snoRNAs and miRNAs) in birds. Furthermore, we describe numerous "losses" of several RNA families, and attribute these to either genuine loss, divergence or missing data. In particular, we show that many of these losses are due to the challenges associated with assembling avian microchromosomes. These combined results illustrate the utility of applying homology-based methods for annotating novel vertebrate genomes.


Asunto(s)
Aves/genética , ARN no Traducido/genética , Animales , Pollos/genética , Biología Computacional , Secuencia Conservada , Dosificación de Gen , Variación Genética , Genoma , Humanos , Mamíferos/genética , MicroARNs/genética , Anotación de Secuencia Molecular , Familia de Multigenes , Seudogenes , ARN Nucleolar Pequeño/genética , Elementos Reguladores de la Transcripción , Especificidad de la Especie
14.
Mol Cell ; 56(3): 389-399, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25514182

RESUMEN

Coilin protein scaffolds Cajal bodies (CBs)-subnuclear compartments enriched in small nuclear RNAs (snRNAs)-and promotes efficient spliceosomal snRNP assembly. The molecular function of coilin, which is intrinsically disordered with no defined motifs, is poorly understood. We use UV crosslinking and immunoprecipitation (iCLIP) to determine whether mammalian coilin binds RNA in vivo and to identify targets. Robust detection of snRNA transcripts correlated with coilin ChIP-seq peaks on snRNA genes, indicating that coilin binding to nascent snRNAs is a site-specific CB nucleator. Surprisingly, several hundred small nucleolar RNAs (snoRNAs) were identified as coilin interactors, including numerous unannotated mouse and human snoRNAs. We show that all classes of snoRNAs concentrate in CBs. Moreover, snoRNAs lacking specific CB retention signals traffic through CBs en route to nucleoli, consistent with the role of CBs in small RNP assembly. Thus, coilin couples snRNA and snoRNA biogenesis, making CBs the cellular hub of small ncRNA metabolism.


Asunto(s)
Cuerpos Enrollados/metabolismo , Proteínas Nucleares/metabolismo , ARN Pequeño no Traducido/metabolismo , Animales , Ciclo Celular , Nucléolo Celular/metabolismo , Células HeLa , Humanos , Ratones , Unión Proteica , Transporte de ARN
15.
BMC Genomics ; 15: 459, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24917120

RESUMEN

BACKGROUND: Annotating mammalian genomes for noncoding RNAs (ncRNAs) is nontrivial since far from all ncRNAs are known and the computational models are resource demanding. Currently, the human genome holds the best mammalian ncRNA annotation, a result of numerous efforts by several groups. However, a more direct strategy is desired for the increasing number of sequenced mammalian genomes of which some, such as the pig, are relevant as disease models and production animals. RESULTS: We present a comprehensive annotation of structured RNAs in the pig genome. Combining sequence and structure similarity search as well as class specific methods, we obtained a conservative set with a total of 3,391 structured RNA loci of which 1,011 and 2,314, respectively, hold strong sequence and structure similarity to structured RNAs in existing databases. The RNA loci cover 139 cis-regulatory element loci, 58 lncRNA loci, 11 conflicts of annotation, and 3,183 ncRNA genes. The ncRNA genes comprise 359 miRNAs, 8 ribozymes, 185 rRNAs, 638 snoRNAs, 1,030 snRNAs, 810 tRNAs and 153 ncRNA genes not belonging to the here fore mentioned classes. When running the pipeline on a local shuffled version of the genome, we obtained no matches at the highest confidence level. Additional analysis of RNA-seq data from a pooled library from 10 different pig tissues added another 165 miRNA loci, yielding an overall annotation of 3,556 structured RNA loci. This annotation represents our best effort at making an automated annotation. To further enhance the reliability, 571 of the 3,556 structured RNAs were manually curated by methods depending on the RNA class while 1,581 were declared as pseudogenes. We further created a multiple alignment of pig against 20 representative vertebrates, from which RNAz predicted 83,859 de novo RNA loci with conserved RNA structures. 528 of the RNAz predictions overlapped with the homology based annotation or novel miRNAs. We further present a substantial synteny analysis which includes 1,004 lineage specific de novo RNA loci and 4 ncRNA loci in the known annotation specific for Laurasiatheria (pig, cow, dolphin, horse, cat, dog, hedgehog). CONCLUSIONS: We have obtained one of the most comprehensive annotations for structured ncRNAs of a mammalian genome, which is likely to play central roles in both health modelling and production. The core annotation is available in Ensembl 70 and the complete annotation is available at http://rth.dk/resources/rnannotator/susscr102/version1.02.


Asunto(s)
Genoma , ARN/metabolismo , Porcinos/genética , Animales , Análisis por Conglomerados , Sitios Genéticos , Humanos , MicroARNs/genética , MicroARNs/metabolismo , ARN/química , ARN/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN no Traducido/genética , ARN no Traducido/metabolismo , Sintenía/genética
16.
Mol Biol Evol ; 31(2): 455-67, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24162733

RESUMEN

Ribosomal and small nuclear RNAs (snRNAs) comprise numerous modified nucleotides. The modification patterns are retained during evolution, making it even possible to project them from yeast onto human. The stringent conservation of modification sites and the slow evolution of rRNAs and snRNAs contradicts the rapid evolution of small nucleolar RNA (snoRNA) sequences. To explain this discrepancy, we investigated the coevolution of snoRNAs and their targeted sites throughout vertebrates. To measure and evaluate the conservation of RNA-RNA interactions, we defined the interaction conservation index (ICI). It combines the quality of individual interaction with the scope of its conservation in a set of species and serves as an efficient measure to evaluate the conservation of the interaction of snoRNA and target. We show that functions of homologous snoRNAs are evolutionarily stable, thus, members of the same snoRNA family guide equivalent modifications. The conservation of snoRNA sequences is high at target binding regions while the remaining sequence varies significantly. In addition to elucidating principles of correlated evolution, we were able, with the help of the ICI measure, to assign functions to previously orphan snoRNAs and to associate snoRNAs as partners to known chemical modifications unassigned to a given snoRNA. Furthermore, we used predictions of snoRNA functions in conjunction with sequence conservation to identify distant homologies. Because of the high overall entropy of snoRNA sequences, such relationships are hard to detect by means of sequence homology search methods alone.


Asunto(s)
ARN Ribosómico/metabolismo , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/genética , Vertebrados/genética , Animales , Sitios de Unión , Secuencia Conservada , Evolución Molecular , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Filogenia , ARN Ribosómico/genética , Homología de Secuencia de Ácido Nucleico , Vertebrados/metabolismo
17.
Bioinformatics ; 30(1): 115-6, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-24174566

RESUMEN

MOTIVATION: Although small nucleolar RNAs form an important class of non-coding RNAs, no comprehensive annotation efforts have been undertaken, presumably because the task is complicated by both the large number of distinct small nucleolar RNA families and their relatively rapid pace of sequence evolution. RESULTS: With snoStrip we present an automatic annotation pipeline developed specifically for comparative genomics of small nucleolar RNAs. It makes use of sequence conservation, canonical box motifs as well as secondary structure and predicts putative targets. AVAILABILITY AND IMPLEMENTATION: The snoStrip web service and the download version is available at http://snostrip.bioinf.uni-leipzig.de/


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , ARN Nucleolar Pequeño/genética , Secuencia de Bases , Secuencia Conservada/genética , ARN Nucleolar Pequeño/química , Análisis de Secuencia de ARN , Programas Informáticos
18.
Nat Genet ; 45(7): 776-783, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23749191

RESUMEN

The duck (Anas platyrhynchos) is one of the principal natural hosts of influenza A viruses. We present the duck genome sequence and perform deep transcriptome analyses to investigate immune-related genes. Our data indicate that the duck possesses a contractive immune gene repertoire, as in chicken and zebra finch, and this repertoire has been shaped through lineage-specific duplications. We identify genes that are responsive to influenza A viruses using the lung transcriptomes of control ducks and ones that were infected with either a highly pathogenic (A/duck/Hubei/49/05) or a weakly pathogenic (A/goose/Hubei/65/05) H5N1 virus. Further, we show how the duck's defense mechanisms against influenza infection have been optimized through the diversification of its ß-defensin and butyrophilin-like repertoires. These analyses, in combination with the genomic and transcriptomic data, provide a resource for characterizing the interaction between host and influenza viruses.


Asunto(s)
Reservorios de Enfermedades , Patos/genética , Patos/virología , Genoma , Gripe Aviar/genética , Transcriptoma/genética , Animales , Secuencia de Bases , Pollos/genética , Vectores de Enfermedades , Patos/inmunología , Femenino , Gansos/genética , Genoma/fisiología , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunidad/genética , Gripe Aviar/inmunología , Datos de Secuencia Molecular , Filogenia , Especificidad de la Especie
19.
RNA Biol ; 8(6): 938-46, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21955586

RESUMEN

The overwhelming majority of small nucleolar RNAs (snoRNAs) fall into two clearly defined classes characterized by distinctive secondary structures and sequence motifs. A small group of diverse ncRNAs, however, shares the hallmarks of one or both classes of snoRNAs but differs substantially from the norm in some respects. Here, we compile the available information on these exceptional cases, conduct a thorough homology search throughout the available metazoan genomes, provide improved and expanded alignments, and investigate the evolutionary histories of these ncRNA families as well as their mutual relationships.


Asunto(s)
Cuerpos Enrollados/metabolismo , Conformación de Ácido Nucleico , ARN Nucleolar Pequeño/química , ARN Nucleolar Pequeño/genética , Animales , Secuencia de Bases , Genoma/genética , Humanos , Datos de Secuencia Molecular , Filogenia , ARN Nucleolar Pequeño/clasificación , Alineación de Secuencia/métodos , Homología de Secuencia de Ácido Nucleico
20.
Bioinformatics ; 27(2): 279-80, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21076148

RESUMEN

MOTIVATION: Small nucleolar RNAs (snoRNAs) are an abundant class of non-coding RNAs with a wide variety of cellular functions including chemical modification of RNA, telomere maintanance, pre-rRNA processing and regulatory activities in alternative splicing. The main role of box C/D snoRNAs is to determine the targets for 2'-O-ribose methylation, which is important for rRNA maturation and splicing regulation of some mRNAs. The targets are still unknown, however, for many 'orphan' snoRNAs. While a fast and efficient target predictor for box H/ACA snoRNAs is available, no comparable tool exists for box C/D snoRNAs, even though they bind to their targets in a much less complex manner. RESULTS: PLEXY is a dynamic programming algorithm that computes thermodynamically optimal interactions of a box C/D snoRNA with a putative target RNA. Implemented as scanner for large input sequences and equipped with filters on the duplex structure, PLEXY is an efficient and reliable tool for the prediction of box C/D snoRNA target sites. AVAILABILITY: The perl script PLEXY is freely available at http://www.bioinf.uni-leipzig.de/Software/PLEXY.


Asunto(s)
ARN Nucleolar Pequeño/química , Programas Informáticos , Algoritmos , ARN Mensajero/química , ARN Ribosómico/química , Análisis de Secuencia de ARN , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA