Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Methods Mol Biol ; 2179: 353-383, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32939733

RESUMEN

Metastasis results from the ability of cancer cells to grow and to spread beyond the primary tumor to distant organs. Epithelial-to-Mesenchymal Transition (EMT), a fundamental developmental process, is reactivated in cancer cells, and causes epithelial properties to evolve into mesenchymal and invasive ones. EMT changes cellular characteristics between two distinct states, yet, the process is not binary but rather reflects a broad spectrum of partial EMT states in which cells exhibit various degrees of intermediate epithelial and mesenchymal phenotypes. EMT is a complex multistep process that involves cellular reprogramming through numerous signaling pathways, alterations in gene expression, and changes in chromatin morphology. Therefore, expression of key proteins, including cadherins, occludin, or vimentin must be precisely regulated. A comprehensive understanding of how changes in nuclear organization, at the level of single genes clusters, correlates with these processes during formation of metastatic cells is still missing and yet may help personalized prognosis and treatment in the clinic. Here, we describe methods to correlate physiological and molecular states of cells undergoing an EMT process with chromatin rearrangements observed via FISH labeling of specific domains.


Asunto(s)
Transición Epitelial-Mesenquimal , Hibridación Fluorescente in Situ/métodos , Cadherinas/genética , Cadherinas/metabolismo , Línea Celular , Células Epiteliales/citología , Células Epiteliales/metabolismo , Humanos , Hibridación Fluorescente in Situ/normas , Ocludina/genética , Ocludina/metabolismo , Sensibilidad y Especificidad , Vimentina/genética , Vimentina/metabolismo
2.
Commun Biol ; 2: 459, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31840104

RESUMEN

Life on the molecular scale is based on a complex interplay of biomolecules under which the ability of binding is crucial. Fluorescence based two-color coincidence detection (TCCD) is commonly used to characterize molecular binding, but suffers from an underestimation of coincident events. Here, we introduce a brightness-gated TCCD which overcomes this limitation and benchmark our approach with two custom-made calibration samples. Applied to a cell-free protein synthesis assay, brightness-gated TCCD unraveled a previously disregarded mode of translation initiation in bacteria.


Asunto(s)
Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Imagen Molecular , Iniciación de la Cadena Peptídica Traduccional , Espectrometría de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia , Imagen Molecular/métodos , Espectrometría de Fluorescencia/métodos
3.
Anal Chem ; 89(21): 11278-11285, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-29022338

RESUMEN

Förster resonance energy transfer (FRET) studies performed at the single molecule level have unique abilities to probe molecular structure, dynamics, and function of biological molecules. This technique requires specimens, like proteins, equipped with two different fluorescent probes attached at specific positions within the molecule of interest. Here, we present an approach of cell-free protein synthesis (CFPS) that provides proteins with two different functional groups for post-translational labeling at the specific amino acid positions. Besides the sulfhydryl group of a cysteine, we make use of an azido group of a p-azido-l-phenylalanine to achieve chemical orthogonality. Herein, we achieve not only a site-specific but, most importantly, also a site-selective, label scheme that permits the highest accuracy of measured data. This is demonstrated in a case study, where we synthesize human calmodulin (CaM) by using a CFPS kit and prove the structural integrity and the full functionality of this protein.


Asunto(s)
Calmodulina/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Azidas , Calmodulina/síntesis química , Calmodulina/genética , Humanos , Mutación , Fenilalanina/análogos & derivados , Fenilalanina/genética , Conformación Proteica
4.
Sci Rep ; 7: 46753, 2017 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-28436469

RESUMEN

Cell-free protein synthesis (CFPS) systems were designed to produce proteins with a minimal set of purified components, thus offering the possibility to follow translation as well as protein folding. In order to characterize the performance of the ribosomes in such a system, it is crucial to separately quantify the two main components of productivity, namely the fraction of active ribosomes and the number of synthesizing cycles. Here, we provide a direct and highly reliable measure of ribosomal activity in any given CFPS system, introducing an enhanced-arrest peptide variant. We observe an almost complete stalling of ribosomes that produce GFPem (~95%), as determined by common centrifugation techniques and fluorescence correlation spectroscopy (FCS). Moreover, we thoroughly study the effect of different ribosomal modifications independently on activity and number of synthesizing cycles. Finally, employing two-colour coincidence detection and two-colour colocalisation microscopy, we demonstrate real-time access to key productivity parameters with minimal sample consumption on a single ribosome level.


Asunto(s)
Sistema Libre de Células , Polirribosomas/metabolismo , Biosíntesis de Proteínas , Ribosomas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Confocal , Plásmidos/genética , Plásmidos/metabolismo , Polirribosomas/genética , Ribosomas/genética , Espectrometría de Fluorescencia
5.
J Virol ; 89(3): 1756-67, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25410868

RESUMEN

UNLABELLED: The HIV-1 Gag polyprotein precursor composed of the matrix (MA), capsid (CA), nucleocapsid (NC), and p6 domains orchestrates virus assembly via interactions between MA and the cell plasma membrane (PM) on one hand and NC and the genomic RNA on the other hand. As the Gag precursor can adopt a bent conformation, a potential interaction of the NC domain with the PM cannot be excluded during Gag assembly at the PM. To investigate the possible interaction of NC with lipid membranes in the absence of any interference from the other domains of Gag, we quantitatively characterized by fluorescence spectroscopy the binding of the mature NC protein to large unilamellar vesicles (LUVs) used as membrane models. We found that NC, either in its free form or bound to an oligonucleotide, was binding with high affinity (∼ 10(7) M(-1)) to negatively charged LUVs. The number of NC binding sites, but not the binding constant, was observed to decrease with the percentage of negatively charged lipids in the LUV composition, suggesting that NC and NC/oligonucleotide complexes were able to recruit negatively charged lipids to ensure optimal binding. However, in contrast to MA, NC did not exhibit a preference for phosphatidylinositol-(4,5)-bisphosphate. These results lead us to propose a modified Gag assembly model where the NC domain contributes to the initial binding of the bent form of Gag to the PM. IMPORTANCE: The NC protein is a highly conserved nucleic acid binding protein that plays numerous key roles in HIV-1 replication. While accumulating evidence shows that NC either as a mature protein or as a domain of the Gag precursor also interacts with host proteins, only a few data are available on the possible interaction of NC with lipid membranes. Interestingly, during HIV-1 assembly, the Gag precursor is thought to adopt a bent conformation where the NC domain may interact with the plasma membrane. In this context, we quantitatively characterized the binding of NC, as a free protein or as a complex with nucleic acids, to lipid membranes and showed that the latter constitute a binding platform for NC. Taken together, our data suggest that the NC domain may play a role in the initial binding events of Gag to the plasma membrane during HIV-1 assembly.


Asunto(s)
Membrana Celular/virología , VIH-1/fisiología , Membrana Dobles de Lípidos/metabolismo , Proteínas de la Nucleocápside/metabolismo , Ensamble de Virus , VIH-1/metabolismo , Metabolismo de los Lípidos , Unión Proteica
6.
Methods Appl Fluoresc ; 3(2): 025004, 2015 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-29148489

RESUMEN

The neuropeptide Y (NPY) plays numerous biological roles that are mediated by a family of G-protein-coupled receptors. Among the latter, the NPY Y1 subtype receptor undergoes a rapid desensitization following agonist exposure. This desensitization was suggested to result from a rapid clathrin-dependent internalization of Y1 and its recycling at the plasma membrane via sorting/early endosomes (SE/EE) and recycling endosomes (RE). Herein, to validate and quantitatively consolidate the mechanism of NPY internalization, we quantitatively investigated the NPY-induced internalization of the Y1 receptor by direct stochastic optical reconstruction microscopy (dSTORM), a super-resolution imaging technique that can resolve EE and SE, which are below the resolution limit of conventional optical microscopes. Using Cy5-labeled NPY, we could monitor with time the internalization and recycling of NPY on HEK293 cells stably expressing eGFP-labeled Y1 receptors. Furthermore, by discriminating the SE/EE from the larger RE by their sizes and monitoring these two populations as a function of time, we could firmly consolidate the kinetic model describing the internalization mechanism of the Y1 receptors as the basis for their rapid desensitization following agonist exposure.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA