Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
J Med Microbiol ; 69(8): 1105-1113, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32597748

RESUMEN

Introduction. Burkholderia cepacia complex (Bcc) bacteria, currently consisting of 23 closely related species, and Burkholderia gladioli, can cause serious and difficult-to-treat infections in people with cystic fibrosis. Identifying Burkholderia bacteria to the species level is considered important for understanding epidemiology and infection control, and predicting clinical outcomes. Matrix-assisted laser desorption/ionization time-of-flight MS (MALDI-TOF) is a rapid method recently introduced in clinical laboratories for bacterial species-level identification. However, reports on the ability of MALDI-TOF to accurately identify Bcc to the species level are mixed.Aim. The aim of this project was to evaluate the accuracy of MALDI-TOF using the Biotyper and VITEK MS systems in identifying isolates from 22 different Bcc species and B. gladioli compared to recA gene sequencing, which is considered the current gold standard for Bcc.Methodology. To capture maximum intra-species variation, phylogenetic trees were constructed from concatenated multi-locus sequence typing alleles and clustered with a novel k-medoids approach. One hundred isolates representing 22 Bcc species, plus B. gladioli, were assessed for bacterial identifications using the two MALDI-TOF systems.Results. At the genus level, 100 and 97.0 % of isolates were confidently identified as Burkholderia by the Biotyper and VITEK MS systems, respectively; moreover, 26.0 and 67.0 % of the isolates were correctly identified to the species level, respectively. In many, but not all, cases of species misidentification or failed identification, a representative library for that species was lacking.Conclusion. Currently available MALDI-TOF systems frequently do not accurately identify Bcc bacteria to the species level.


Asunto(s)
Burkholderia cepacia/aislamiento & purificación , Burkholderia gladioli/aislamiento & purificación , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Animales , Técnicas de Tipificación Bacteriana/métodos , Burkholderia cepacia/clasificación , Burkholderia gladioli/clasificación , Análisis por Conglomerados , ADN Bacteriano/química , ADN Bacteriano/aislamiento & purificación , Análisis de Fourier , Humanos , Tipificación de Secuencias Multilocus , Filogenia , Rec A Recombinasas/genética , Alineación de Secuencia
3.
J Ind Microbiol Biotechnol ; 27(6): 360-7, 2001 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11774001

RESUMEN

The biosynthesis of complex reduced polyketides is catalysed in actinomycetes by large multifunctional enzymes, the modular Type I polyketide synthases (PKSs). Most of our current knowledge of such systems stems from the study of a restricted number of macrolide-synthesising enzymes. The sequencing of the genes for the biosynthesis of monensin A, a typical polyether ionophore polyketide, provided the first genetic evidence for the mechanism of oxidative cyclisation through which polyethers such as monensin are formed from the uncyclised products of the PKS. Two intriguing genes associated with the monensin PKS cluster code for proteins, which show strong homology with enzymes that trigger double bond migrations in steroid biosynthesis by generation of an extended enolate of an unsaturated ketone residue. A similar mechanism operating at the stage of an enoyl ester intermediate during chain extension on a PKS could allow isomerisation of an E double bond to the Z isomer. This process, together with epoxidations and cyclisations, form the basis of a revised proposal for monensin formation. The monensin PKS has also provided fresh insight into general features of catalysis by modular PKSs, in particular into the mechanism of chain initiation.


Asunto(s)
Genes Bacterianos , Monensina/biosíntesis , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Streptomyces/enzimología , Biotecnología/métodos , Familia de Multigenes , Ingeniería de Proteínas , Análisis de Secuencia de ADN , Streptomyces/genética , Streptomyces/metabolismo
5.
Acta Crystallogr D Biol Crystallogr ; 56(Pt 4): 481-3, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10739927

RESUMEN

The aromatic monooxygenase ActVA-Orf6 from Streptomyces coelicolor A3(2) that catalyses an unusual oxidation on the actinorhodin biosynthetic pathway has been crystallized. The crystals diffract to 1.73 A and belong to space group P2(1)2(1)2(1), with unit-cell parameters a = 46.95, b = 59.29, c = 71.67 A. Solvent-content (44%) and self-rotation function calculations predict the presence of two molecules in the asymmetric unit. Structure determination should provide further insight into the enzyme mechanism and aid in the design of biosynthetic pathways to produce new polyketide natural products with novel functionality.


Asunto(s)
Oxigenasas de Función Mixta/química , Streptomyces/enzimología , Antraquinonas/metabolismo , Antibacterianos/biosíntesis , Cristalización , Cristalografía por Rayos X , Oxigenasas de Función Mixta/aislamiento & purificación , Oxigenasas de Función Mixta/metabolismo
6.
J Biol Chem ; 275(11): 7612-8, 2000 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-10713069

RESUMEN

Glucose depletion derepresses the Saccharomyces cerevisiae ADH2 gene; this metabolic change is accompanied by chromatin structural modifications in the promoter region. We show that the ADR6/SWI1 gene is not necessary for derepression of the wild type chromosomal ADH2, whereas the transcription factor Adr1p, which regulates several S. cerevisiae functions, plays a major role in driving nucleosome reconfiguration and ADH2 expression. When we tested the effect of individual domains of the regulatory protein Adr1p on the chromatin structure of ADH2, a remodeling consisting of at least two steps was observed. Adr1p derivatives were analyzed in derepressing conditions, showing that the Adr1p DNA binding domain alone causes an alteration in chromatin organization in the absence of transcription. This alteration differs from the remodeling observed in the presence of the Adr1p activation domain when the promoter is transcriptionally active.


Asunto(s)
Alcohol Deshidrogenasa/genética , Nucleosomas/metabolismo , Regiones Promotoras Genéticas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Represión Enzimática , Regulación Fúngica de la Expresión Génica , Modelos Genéticos , Unión Proteica , Saccharomyces cerevisiae/enzimología , TATA Box , Factores de Transcripción/metabolismo , Transcripción Genética
7.
Antonie Van Leeuwenhoek ; 78(3-4): 287-95, 2000 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-11386351

RESUMEN

Lovastatin biosynthesis in Aspergillus terreus involves two unusual type I multifunctional polyketide syntheses (PKSs). Lovastatin nonaketide synthase (LNKS), the product of the lovB gene, is an iterative PKS that interacts with LovC, a putative enoyl reductase, to catalyze the 35 separate reactions in the biosynthesis of dihydromonacolin L, a lovastatin precursor. LNKS also displays Diels-Alderase activity in vitro. Lovastatin diketide synthase (LDKS) made by lovF, in contrast, acts non-iteratively like the bacterial modular PKSs to make (2R)-2-methylbutyric acid. Then, like LNKS, LDKS interacts closely with another protein, the LovD transesterase enzyme that catalyzes attachment of the 2-methylbutyric acid to monacolin J in the final step of the lovastatin pathway. Key features of the genes for these four enzymes and others, plus the regulatory and self-resistance factors involved in lovastatin production, are also described.


Asunto(s)
Antibacterianos/biosíntesis , Aspergillus/enzimología , Lovastatina/biosíntesis , Complejos Multienzimáticos/metabolismo , Antibacterianos/química , Aspergillus/genética , Lovastatina/genética , Complejos Multienzimáticos/genética
8.
Science ; 284(5418): 1368-72, 1999 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-10334994

RESUMEN

Polyketides, the ubiquitous products of secondary metabolism in microorganisms, are made by a process resembling fatty acid biosynthesis that allows the suppression of reduction or dehydration reactions at specific biosynthetic steps, giving rise to a wide range of often medically useful products. The lovastatin biosynthesis cluster contains two type I polyketide synthase genes. Synthesis of the main nonaketide-derived skeleton was found to require the previously known iterative lovastatin nonaketide synthase (LNKS), plus at least one additional protein (LovC) that interacts with LNKS and is necessary for the correct processing of the growing polyketide chain and production of dihydromonacolin L. The noniterative lovastatin diketide synthase (LDKS) enzyme specifies formation of 2-methylbutyrate and interacts closely with an additional transesterase (LovD) responsible for assembling lovastatin from this polyketide and monacolin J.


Asunto(s)
Aspergillus/metabolismo , Esterasas/metabolismo , Proteínas Fúngicas/metabolismo , Lovastatina/biosíntesis , Complejos Multienzimáticos/metabolismo , Aspergillus/enzimología , Aspergillus/genética , Aspergillus nidulans/enzimología , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Sitios de Unión , Butiratos/metabolismo , Genes Fúngicos , Complejos Multienzimáticos/química , Complejos Multienzimáticos/genética , Naftalenos/metabolismo
9.
Biochemistry ; 38(15): 4794-9, 1999 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-10200167

RESUMEN

Mutations in the Streptomyces peucetius dnrD gene block the ring cyclization leading from aklanonic acid methyl ester (AAME) to aklaviketone (AK), an intermediate in the biosynthetic pathway to daunorubicin (DNR) and doxorubicin. To investigate the role of DnrD in this transformation, its gene was overexpressed in Escherichia coli and the DnrD protein was purified to homogeneity and characterized. The enzyme was shown to catalyze the conversion of AAME to AK presumably via an intramolecular aldol condensation mechanism. In contrast to the analogous intramolecular aldol cyclization catalyzed by the TcmI protein from the tetracenomycin (TCM) C pathway in Streptomyces glaucescens, where a tricyclic anthraquinol carboxylic acid is converted to its fully aromatic tetracyclic form, the conversion catalyzed by DnrD occurs after anthraquinone formation and requires activation of a carboxylic acid group by esterification of aklanonic acid, the AAME precursor. Also, the cyclization is not coupled with a subsequent dehydration step that would result in an aromatic ring. As the substrates for the DnrD and TcmI enzymes are among the earliest isolable intermediates of aromatic polyketide biosynthesis, an understanding of the mechanism and active site topology of these proteins will allow one to determine the substrate and mechanistic parameters that are important for aromatic ring formation. In the future, these parameters may be able to be applied to some of the earlier polyketide cyclization processes that currently are difficult to study in vitro.


Asunto(s)
Doxorrubicina/biosíntesis , Isomerasas/metabolismo , Secuencia de Bases , Cartilla de ADN , Ésteres , Concentración de Iones de Hidrógeno , Isomerasas/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Streptomyces/genética
10.
J Bacteriol ; 179(13): 4305-10, 1997 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9209048

RESUMEN

The oxidation of phenols to quinones is an important reaction in the oxidative tailoring of many aromatic polyketides from bacterial and fungal systems. Sequence similarity between ActVA-Orf6 protein from the actinorhodin biosynthetic cluster and the previously characterized TcmH protein that is involved in tetracenomycin biosynthesis suggested that ActVA-Orf6 might catalyze this transformation as a step in actinorhodin biosynthesis. To investigate the role of ActVA-Orf6 in this oxidation, we have expressed the actVA-Orf6 gene in Escherichia coli and purified and characterized the recombinant protein. ActVA-Orf6 was shown to catalyze the monooxygenation of the tetracenomycin intermediate TcmF1 to TcmD3, strongly suggesting that it catalyzes oxidation of a similar intermediate in actinorhodin biosynthesis. The monooxygenase obeys simple reaction kinetics and has a Km of 4.8 +/- 0.9 microM, close to the figure reported for the homologous enzyme TcmH. The enzyme contains no prosthetic groups and requires only molecular oxygen to catalyze the oxidation. Site-directed mutagenesis was used to investigate the role of histidine residues thought to be important in the reaction; mutants lacking His-52 displayed much-reduced activity, consistent with the proposed mechanistic hypothesis that this histidine acts as a general base during catalysis.


Asunto(s)
Antibacterianos/metabolismo , Oxigenasas/metabolismo , Streptomyces/enzimología , Antraquinonas/metabolismo , Catálisis , Escherichia coli , Expresión Génica , Histidina , Cinética , Familia de Multigenes , Mutación , Naftacenos/metabolismo , Sistemas de Lectura Abierta , Oxigenasas/química , Oxigenasas/genética , Oxigenasas/aislamiento & purificación , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Proteínas Recombinantes de Fusión/metabolismo , Streptomyces/genética , Especificidad por Sustrato
11.
J Biol Chem ; 270(29): 17339-43, 1995 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-7615536

RESUMEN

The biosynthesis of the polyketide antibiotic actinorhodin by Streptomyces coelicolor involves the oxidative dimerization and hydroxylation of a precursor, most likely dihydrokalafungin, as the final steps in its formation. Mutations in the actVB gene block these last steps, and the mutants secrete kalafungin as a shunt product. To investigate the role of the actVB gene in these transformation, we have overexpressed the gene in Escherichia coli and purified and characterized the recombinant protein. ActVB was shown to catalyze the reduction of FMN by NADH to give NAD and FMNH2, which, unusually, is released into solution. The protein contains no chromogenic cofactors and exhibits no requirements for added metal ions. The reaction obeys simple kinetics and proceeds through the formation of a ternary complex; Km values for FMN and NADH are 1.5 and 7.3 microM, respectively, and kcat is about 5 s-1. FAD and riboflavin are also substrates for the enzyme, although they have much higher Km values. The subunit structure of the enzyme was investigated by analytical ultracentrifugation, which showed the protein to exist in rapid equilibrium between monomer and dimer forms. The possible role of this oxidoreductase in the oxidative chemistry of actinorhodin biosynthesis is discussed.


Asunto(s)
Antibacterianos/metabolismo , NADH NADPH Oxidorreductasas/aislamiento & purificación , Secuencia de Aminoácidos , Antraquinonas/metabolismo , Secuencia de Bases , Escherichia coli/genética , FMN Reductasa , Datos de Secuencia Molecular , NADH NADPH Oxidorreductasas/química , NADH NADPH Oxidorreductasas/fisiología , Conformación Proteica , Proteínas Recombinantes/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA