Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Res Sq ; 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-38045390

RESUMEN

The combinatorial effect of genetic variants is often assumed to be additive. Although genetic variation can clearly interact non-additively, methods to uncover epistatic relationships remain in their infancy. We develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy. We derive deep learning-based estimates of left ventricular mass from the cardiac MRI scans of 29,661 individuals enrolled in the UK Biobank. We report epistatic genetic variation including variants close to CCDC141, IGF1R, TTN, and TNKS. Several loci not prioritized by univariate genome-wide association analysis are identified. Functional genomic and integrative enrichment analyses reveal a complex gene regulatory network in which genes mapped from these loci share biological processes and myogenic regulatory factors. Through a network analysis of transcriptomic data from 313 explanted human hearts, we show that these interactions are preserved at the level of the cardiac transcriptome. We assess causality of epistatic effects via RNA silencing of gene-gene interactions in human induced pluripotent stem cell-derived cardiomyocytes. Finally, single-cell morphology analysis using a novel high-throughput microfluidic system shows that cardiomyocyte hypertrophy is non-additively modifiable by specific pairwise interactions between CCDC141 and both TTN and IGF1R. Our results expand the scope of genetic regulation of cardiac structure to epistasis.

2.
medRxiv ; 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37987017

RESUMEN

The combinatorial effect of genetic variants is often assumed to be additive. Although genetic variation can clearly interact non-additively, methods to uncover epistatic relationships remain in their infancy. We develop low-signal signed iterative random forests to elucidate the complex genetic architecture of cardiac hypertrophy. We derive deep learning-based estimates of left ventricular mass from the cardiac MRI scans of 29,661 individuals enrolled in the UK Biobank. We report epistatic genetic variation including variants close to CCDC141, IGF1R, TTN, and TNKS. Several loci not prioritized by univariate genome-wide association analysis are identified. Functional genomic and integrative enrichment analyses reveal a complex gene regulatory network in which genes mapped from these loci share biological processes and myogenic regulatory factors. Through a network analysis of transcriptomic data from 313 explanted human hearts, we show that these interactions are preserved at the level of the cardiac transcriptome. We assess causality of epistatic effects via RNA silencing of gene-gene interactions in human induced pluripotent stem cell-derived cardiomyocytes. Finally, single-cell morphology analysis using a novel high-throughput microfluidic system shows that cardiomyocyte hypertrophy is non-additively modifiable by specific pairwise interactions between CCDC141 and both TTN and IGF1R. Our results expand the scope of genetic regulation of cardiac structure to epistasis.

3.
Cell Rep Med ; 4(9): 101194, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37729870

RESUMEN

Emerging evidence implicates microbiome involvement in the development of pancreatic cancer (PaCa). Here, we investigate whether increases in circulating microbial-related metabolites associate with PaCa risk by applying metabolomics profiling to 172 sera collected within 5 years prior to PaCa diagnosis and 863 matched non-subject sera from participants in the Prostate, Lung, Colorectal, and Ovarian (PLCO) cohort. We develop a three-marker microbial-related metabolite panel to assess 5-year risk of PaCa. The addition of five non-microbial metabolites further improves 5-year risk prediction of PaCa. The combined metabolite panel complements CA19-9, and individuals with a combined metabolite panel + CA19-9 score in the top 2.5th percentile have absolute 5-year risk estimates of >13%. The risk prediction model based on circulating microbial and non-microbial metabolites provides a potential tool to identify individuals at high risk of PaCa that would benefit from surveillance and/or from potential cancer interception strategies.


Asunto(s)
Antígeno CA-19-9 , Neoplasias Pancreáticas , Masculino , Humanos , Neoplasias Pancreáticas/diagnóstico , Páncreas , Metabolómica , Neoplasias Pancreáticas
4.
Econom Stat ; 25: 66-86, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36620476

RESUMEN

Obesity is a highly heritable condition that affects increasing numbers of adults and, concerningly, of children. However, only a small fraction of its heritability has been attributed to specific genetic variants. These variants are traditionally ascertained from genome-wide association studies (GWAS), which utilize samples with tens or hundreds of thousands of individuals for whom a single summary measurement (e.g., BMI) is collected. An alternative approach is to focus on a smaller, more deeply characterized sample in conjunction with advanced statistical models that leverage longitudinal phenotypes. Novel functional data analysis (FDA) techniques are used to capitalize on longitudinal growth information from a cohort of children between birth and three years of age. In an ultra-high dimensional setting, hundreds of thousands of single nucleotide polymorphisms (SNPs) are screened, and selected SNPs are used to construct two polygenic risk scores (PRS) for childhood obesity using a weighting approach that incorporates the dynamic and joint nature of SNP effects. These scores are significantly higher in children with (vs. without) rapid infant weight gain-a predictor of obesity later in life. Using two independent cohorts, it is shown that the genetic variants identified in very young children are also informative in older children and in adults, consistent with early childhood obesity being predictive of obesity later in life. In contrast, PRSs based on SNPs identified by adult obesity GWAS are not predictive of weight gain in the cohort of young children. This provides an example of a successful application of FDA to GWAS. This application is complemented with simulations establishing that a deeply characterized sample can be just as, if not more, effective than a comparable study with a cross-sectional response. Overall, it is demonstrated that a deep, statistically sophisticated characterization of a longitudinal phenotype can provide increased statistical power to studies with relatively small sample sizes; and shows how FDA approaches can be used as an alternative to the traditional GWAS.

5.
Biometrics ; 78(4): 1592-1603, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34437713

RESUMEN

Biomedical research is increasingly data rich, with studies comprising ever growing numbers of features. The larger a study, the higher the likelihood that a substantial portion of the features may be redundant and/or contain contamination (outlying values). This poses serious challenges, which are exacerbated in cases where the sample sizes are relatively small. Effective and efficient approaches to perform sparse estimation in the presence of outliers are critical for these studies, and have received considerable attention in the last decade. We contribute to this area considering high-dimensional regressions contaminated by multiple mean-shift outliers affecting both the response and the design matrix. We develop a general framework and use mixed-integer programming to simultaneously perform feature selection and outlier detection with provably optimal guarantees. We prove theoretical properties for our approach, that is, a necessary and sufficient condition for the robustly strong oracle property, where the number of features can increase exponentially with the sample size; the optimal estimation of parameters; and the breakdown point of the resulting estimates. Moreover, we provide computationally efficient procedures to tune integer constraints and warm-start the algorithm. We show the superior performance of our proposal compared to existing heuristic methods through simulations and use it to study the relationships between childhood obesity and the human microbiome.


Asunto(s)
Obesidad Infantil , Niño , Humanos , Algoritmos , Tamaño de la Muestra , Probabilidad
6.
J Comput Graph Stat ; 30(3): 566-577, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36406776

RESUMEN

Recent advances in mathematical programming have made Mixed Integer Optimization a competitive alternative to popular regularization methods for selecting features in regression problems. The approach exhibits unquestionable foundational appeal and versatility, but also poses important challenges. Here we propose MIP-BOOST, a revision of standard Mixed Integer Programming feature selection that reduces the computational burden of tuning the critical sparsity bound parameter and improves performance in the presence of feature collinearity and of signals that vary in nature and strength. The final outcome is a more efficient and effective L 0 Feature Selection method for applications of realistic size and complexity, grounded on rigorous cross-validation tuning and exact optimization of the associated Mixed Integer Program. Computational viability and improved performance in realistic scenarios is achieved through three independent but synergistic proposals. Supplementary materials including additional results, pseudocode, and computer code are available online.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA