Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 162
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
J Equine Vet Sci ; 139: 105092, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38735346

RESUMEN

There is limited data on current knowledge of Pennsylvania horse caretakers on tick-borne diseases (TBDs), tick identification, and tick management practices. This study aimed to determine tick knowledge, concern, and management among Pennsylvania equine caretakers using an online survey. Descriptive statistics and one-way ANOVA tests were used to analyze data. The survey received 894 responses (539 completed) from Pennsylvania equine owners and caretakers. The largest proportion of respondents cared for 3-5 horses (31 %), followed by 2 horses (27 %). Veterinarian-confirmed diagnosis rates of two TBDs, Lyme disease and anaplasmosis, were 38 % and 22 %, respectively. Most respondents (39 %) were moderately confident in recognizing Lyme disease, while most (44 %) were not confident at all in recognizing anaplasmosis. Most respondents (69 %) were either extremely or very concerned about their horses contracting any TBDs. Tick bite and TBD prevention methods used by equine caretakers included performing tick checks, using on-animal repellents, and conducting pasture/landscape management. Ten knowledge-based questions were asked, and the mean correct score was 3.97 ± 2.18 out of 10 possible points. There were significant positive associations between higher knowledge scores and previous veterinarian-confirmed equine Lyme disease diagnosis, higher concern level of TBDs, and higher frequency of tick checks. With increased equine TBD prevalence and high levels of horse owner concern about TBD, Extension educators should focus on teaching about TBDs and managing ticks on horses and farms.

2.
Nature ; 626(8001): 1108-1115, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326622

RESUMEN

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Asunto(s)
Trastorno Depresivo Mayor , Metaloproteinasa 8 de la Matriz , Monocitos , Estrés Psicológico , Animales , Humanos , Ratones , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/enzimología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Espacio Extracelular/metabolismo , Metaloproteinasa 8 de la Matriz/sangre , Metaloproteinasa 8 de la Matriz/deficiencia , Metaloproteinasa 8 de la Matriz/genética , Metaloproteinasa 8 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Monocitos/química , Monocitos/inmunología , Monocitos/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Tejido Parenquimatoso/metabolismo , Análisis de Expresión Génica de una Sola Célula , Conducta Social , Aislamiento Social , Estrés Psicológico/sangre , Estrés Psicológico/genética , Estrés Psicológico/inmunología , Estrés Psicológico/metabolismo
3.
Sci Rep ; 13(1): 18691, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907662

RESUMEN

We describe the decoherence instability of Schrödinger Cat states in the two-site Bose-Hubbard model with an attractive on-site interaction between particles. For N particles with onsite attractive energy U and hopping amplitude between sites t, Cat states exist for [Formula: see text] at zero temperature. However, they are increasingly unstable to small thermal fluctuations as the Cat itself is increasingly well-defined and its components become well-separated. For any given [Formula: see text], the decoherence temperature becomes smaller for large N. The loss of off-diagonal coherence peaks in the equilibrium density matrix is dominated by the thermal admixture of the first excited state of the many-body system with its ground state. Particle number fluctuations, described in the grand canonical ensemble also reduce coherence, but to a lesser degree than thermal fluctuations. The full density matrix of the Schrödinger Cat is obtained by exact numerical diagonalization of the many-body Hamiltonian and a narrow regime in the parameter space of the particle number, temperature, and U/t is identified where small Cat states may survive decoherence in a physical environment.

4.
Proc Natl Acad Sci U S A ; 120(49): e2305778120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-38011565

RESUMEN

Clinical studies have revealed a high comorbidity between autoimmune diseases and psychiatric disorders, including major depressive disorder (MDD). However, the mechanisms connecting autoimmunity and depression remain unclear. Here, we aim to identify the processes by which stress impacts the adaptive immune system and the implications of such responses to depression. To examine this relationship, we analyzed antibody responses and autoimmunity in the chronic social defeat stress (CSDS) model in mice, and in clinical samples from patients with MDD. We show that socially stressed mice have elevated serum antibody concentrations. We also confirm that social stress leads to the expansion of specific T and B cell populations within the cervical lymph nodes, where brain-derived antigens are preferentially delivered. Sera from stress-susceptible (SUS) mice exhibited high reactivity against brain tissue, and brain-reactive immunoglobulin G (IgG) antibody levels positively correlated with social avoidance behavior. IgG antibody concentrations in the brain were significantly higher in SUS mice than in unstressed mice, and positively correlated with social avoidance. Similarly, in humans, increased peripheral levels of brain-reactive IgG antibodies were associated with increased anhedonia. In vivo assessment of IgG antibodies showed they largely accumulate around blood vessels in the brain only in SUS mice. B cell-depleted mice exhibited stress resilience following CSDS, confirming the contribution of antibody-producing cells to social avoidance behavior. This study provides mechanistic insights connecting stress-induced autoimmune reactions against the brain and stress susceptibility. Therapeutic strategies targeting autoimmune responses might aid in the treatment of patients with MDD featuring immune abnormalities.


Asunto(s)
Autoinmunidad , Trastorno Depresivo Mayor , Humanos , Ratones , Animales , Encéfalo , Conducta Social , Inmunoglobulina G , Estrés Psicológico/psicología , Ratones Endogámicos C57BL
5.
Brain Behav Immun ; 114: 311-324, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37657643

RESUMEN

BACKGROUND: The pathophysiology of autism spectrum disorder (ASD) involves genetic and environmental factors. Mounting evidence demonstrates a role for the gut microbiome in ASD, with signaling via short-chain fatty acids (SCFA) as one mechanism. Here, we utilize mice carrying deletion to exons 4-22 of Shank3 (Shank3KO) to model gene by microbiome interactions in ASD. We identify SCFA acetate as a mediator of gut-brain interactions and show acetate supplementation reverses social deficits concomitant with alterations to medial prefrontal cortex (mPFC) transcriptional regulation independent of microbiome status. METHODS: Shank3KO and wild-type (Wt) littermates were divided into control, Antibiotic (Abx), Acetate and Abx + Acetate groups upon weaning. After six weeks, animals underwent behavioral testing. Molecular analysis including 16S and metagenomic sequencing, metabolomic and transcriptional profiling were conducted. Additionally, targeted serum metabolomic data from Phelan McDermid Syndrome (PMS) patients (who are heterozygous for the Shank3 gene) were leveraged to assess levels of SCFA's relative to ASD clinical measures. RESULTS: Shank3KO mice were found to display social deficits, dysregulated gut microbiome and decreased cecal levels of acetate - effects exacerbated by Abx treatment. RNA-sequencing of mPFC showed unique gene expression signature induced by microbiome depletion in the Shank3KO mice. Oral treatment with acetate reverses social deficits and results in marked changes in gene expression enriched for synaptic signaling, pathways among others, even in Abx treated mice. Clinical data showed sex specific correlations between levels of acetate and hyperactivity scores. CONCLUSION: These results suggest a key role for the gut microbiome and the neuroactive metabolite acetate in regulating ASD-like behaviors.


Asunto(s)
Trastorno del Espectro Autista , Humanos , Masculino , Femenino , Ratones , Animales , Trastorno del Espectro Autista/genética , Proteínas del Tejido Nervioso/genética , Corteza Prefrontal , Acetatos/farmacología , Suplementos Dietéticos , Proteínas de Microfilamentos
6.
Sci Rep ; 13(1): 15313, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37714916

RESUMEN

We describe the trapping and absorption of audible sound in centimeter-scale claddings of two-dimensional, locally resonant phononic crystals. In a square lattice of local resonators consisting of steel cores and cellulose shells, embedded in a viscous foam, dual acoustic-range band gaps extending from about 200 to [Formula: see text] are achieved. The spectral range consists of a low-frequency, local resonance gap, separated from a higher frequency Bragg resonance gap, by narrow bands of slow-sound modes. We demonstrate that thin claddings of such phononic crystal, of only three unit cells in thickness, can effectively prevent sound transmission, by a combination of reflection and absorption, over much of the audible spectrum. Moreover, frequency-selective sound transmission can be enabled by engineering waveguide channels that transmit sound through the local resonance gap, the Bragg gap, or both. This offers a path to sound-sculpting claddings that can surround a noise-generating source. The viscoelastic foam in our cladding is treated using a fractional Voigt model, capable of describing experimentally observed responses.

7.
bioRxiv ; 2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37662400

RESUMEN

Chronic stress induces changes in the periphery and the central nervous system (CNS) that contribute to neuropathology and behavioral abnormalities associated with psychiatric disorders. In this study, we examined the impact of peripheral and central inflammation during chronic social defeat stress (CSDS) in female mice. Compared to male mice, we found that female mice exhibited heightened peripheral inflammatory response and identified C-C motif chemokine ligand 5 (CCL5), as a stress-susceptibility marker in females. Blocking CCL5 signaling in the periphery promoted resilience to CSDS. In the brain, stress-susceptible mice displayed increased expression of C-C chemokine receptor 5 (CCR5), a receptor for CCL5, in microglia in the prefrontal cortex (PFC). This upregulation was associated with microglia morphological changes, their increased migration to the blood vessels, and enhanced phagocytosis of synaptic components and vascular material. These changes coincided with neurophysiological alterations and impaired blood-brain barrier (BBB) integrity. By blocking CCR5 signaling specifically in the PFC were able to prevent stress-induced physiological changes and rescue social avoidance behavior. Our findings are the first to demonstrate that stress-mediated dysregulation of the CCL5-CCR5 axis triggers excessive phagocytosis of synaptic materials and neurovascular components by microglia, resulting in disruptions in neurotransmission, reduced BBB integrity, and increased stress susceptibility. Our study provides new insights into the role of cortical microglia in female stress susceptibility and suggests that the CCL5-CCR5 axis may serve as a novel sex-specific therapeutic target for treating psychiatric disorders in females.

8.
Nat Rev Neurosci ; 24(10): 591-604, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37626176

RESUMEN

Stress-linked psychiatric disorders, including anxiety and major depressive disorder, are associated with systemic inflammation. Recent studies have reported stress-induced alterations in haematopoiesis that result in monocytosis, neutrophilia, lymphocytopenia and, consequently, in the upregulation of pro-inflammatory processes in immunologically relevant peripheral tissues. There is now evidence that this peripheral inflammation contributes to the development of psychiatric symptoms as well as to common co-morbidities of psychiatric disorders such as metabolic syndrome and immunosuppression. Here, we review the specific brain and spinal regions, and the neuronal populations within them, that respond to stress and transmit signals to peripheral tissues via the autonomic nervous system or neuroendocrine pathways to influence immunological function. We comprehensively summarize studies that have employed retrograde tracing to define neurocircuits linking the brain to the bone marrow, spleen, gut, adipose tissue and liver. Moreover, we highlight studies that have used chemogenetic or optogenetic manipulation or intracerebroventricular administration of peptide hormones to control somatic immune responses. Collectively, this growing body of literature illustrates potential mechanisms through which stress signals are conveyed from the CNS to immune cells to regulate stress-relevant behaviours and comorbid pathophysiology.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Tejido Adiposo , Ansiedad , Inflamación , Inmunidad
9.
Res Sq ; 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36778505

RESUMEN

Psychosocial stress has profound effects on the body, including the peripheral immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3,4,5, the underlying mechanisms are not well understood. Here we show that a peripheral myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is elevated in serum of subjects with MDD as well as in stress-susceptible (SUS) mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), thereby altering social behaviour. Using a combination of mass cytometry and single-cell RNA-sequencing, we performed high-dimensional phenotyping of immune cells in circulation and brain and demonstrate that peripheral monocytes are strongly affected by stress. Both peripheral and brain-infiltrating monocytes of SUS mice showed increased Mmp8 expression following CSDS. We further demonstrate that peripheral MMP8 directly infiltrates the NAc parenchyma to control the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a novel mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.

10.
Nature ; 613(7945): 696-703, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36450985

RESUMEN

In humans, traumatic social experiences can contribute to psychiatric disorders1. It is suggested that social trauma impairs brain reward function such that social behaviour is no longer rewarding, leading to severe social avoidance2,3. In rodents, the chronic social defeat stress (CSDS) model has been used to understand the neurobiology underlying stress susceptibility versus resilience following social trauma, yet little is known regarding its impact on social reward4,5. Here we show that, following CSDS, a subset of male and female mice, termed susceptible (SUS), avoid social interaction with non-aggressive, same-sex juvenile C57BL/6J mice and do not develop context-dependent social reward following encounters with them. Non-social stressors have no effect on social reward in either sex. Next, using whole-brain Fos mapping, in vivo Ca2+ imaging and whole-cell recordings, we identified a population of stress/threat-responsive lateral septum neurotensin (NTLS) neurons that are activated by juvenile social interactions only in SUS mice, but not in resilient or unstressed control mice. Optogenetic or chemogenetic manipulation of NTLS neurons and their downstream connections modulates social interaction and social reward. Together, these data suggest that previously rewarding social targets are possibly perceived as social threats in SUS mice, resulting from hyperactive NTLS neurons that occlude social reward processing.


Asunto(s)
Vías Nerviosas , Trauma Psicológico , Recompensa , Núcleos Septales , Conducta Social , Estrés Psicológico , Animales , Femenino , Masculino , Ratones , Encéfalo/patología , Encéfalo/fisiopatología , Calcio/análisis , Calcio/metabolismo , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neurotensina/metabolismo , Optogenética , Trauma Psicológico/patología , Trauma Psicológico/fisiopatología , Núcleos Septales/patología , Núcleos Septales/fisiopatología , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología
11.
Int J Mol Sci ; 23(21)2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36362150

RESUMEN

Recent advances in next-generation sequencing (NGS) technologies have opened the door to a wellspring of information regarding the composition of the gut microbiota. Leveraging NGS technology, early metagenomic studies revealed that several diseases, such as Alzheimer's disease, Parkinson's disease, autism, and myalgic encephalomyelitis, are characterized by alterations in the diversity of gut-associated microbes. More recently, interest has shifted toward understanding how these microbes impact their host, with a special emphasis on their interactions with the brain. Such interactions typically occur either systemically, through the production of small molecules in the gut that are released into circulation, or through signaling via the vagus nerves which directly connect the enteric nervous system to the central nervous system. Collectively, this system of communication is now commonly referred to as the gut-microbiota-brain axis. While equally important, little attention has focused on the causes of the alterations in the composition of gut microbiota. Although several factors can contribute, mucosal immunity plays a significant role in shaping the microbiota in both healthy individuals and in association with several diseases. The purpose of this review is to provide a brief overview of the components of mucosal immunity that impact the gut microbiota and then discuss how altered immunological conditions may shape the gut microbiota and consequently affect neuroimmune diseases, using a select group of common neuroimmune diseases as examples.


Asunto(s)
Sistema Nervioso Entérico , Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , Inmunidad Mucosa , Microbioma Gastrointestinal/fisiología , Sistema Nervioso Entérico/fisiología , Encéfalo/fisiología
12.
Physiol Plant ; 174(6): e13803, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36259085

RESUMEN

Photosynthesis is fundamental for plant growth and yield. The cytochrome b6 f complex catalyses a rate-limiting step in thylakoid electron transport and therefore represents an important point of regulation of photosynthesis. Here we show that overexpression of a single core subunit of cytochrome b6 f, the Rieske FeS protein, led to up to a 40% increase in the abundance of the complex in Nicotiana tabacum (tobacco) and was accompanied by an enhanced in vitro cytochrome f activity, indicating a full functionality of the complex. Analysis of transgenic plants overexpressing Rieske FeS by the light-induced fluorescence transients technique revealed a more oxidised primary quinone acceptor of photosystem II (QA ) and plastoquinone pool and faster electron transport from the plastoquinone pool to photosystem I upon changes in irradiance, compared to control plants. A faster establishment of qE , the energy-dependent component of nonphotochemical quenching, in transgenic plants suggests a more rapid buildup of the transmembrane proton gradient, also supporting the increased in vivo cytochrome b6 f activity. However, there was no consistent increase in steady-state rates of electron transport or CO2 assimilation in plants overexpressing Rieske FeS grown in either laboratory conditions or field trials, suggesting that the in vivo activity of the complex was only transiently increased upon changes in irradiance. Our results show that overexpression of Rieske FeS in tobacco enhances the abundance of functional cytochrome b6 f and may have the potential to increase plant productivity if combined with other traits.


Asunto(s)
Citocromos b , Nicotiana , Nicotiana/genética , Nicotiana/metabolismo , Citocromos b/metabolismo , Plastoquinona , Fotosíntesis/fisiología , Transporte de Electrón/fisiología , Complejo de Citocromo b6f/genética , Complejo de Citocromo b6f/metabolismo , Plantas Modificadas Genéticamente/metabolismo
13.
J Exp Bot ; 73(14): 4897-4907, 2022 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-35561330

RESUMEN

In this study, four tobacco transformants overexpressing the inorganic carbon transporter B gene (ictB) were screened for photosynthetic performance relative to the wild type (WT) in field-based conditions. The WT and transgenic tobacco plants were evaluated for photosynthetic performance to determine the maximum rate of carboxylation (Vc, max), maximum rate of electron transport (Jmax), the photosynthetic compensation point (Γ*), quantum yield of PSII (ΦPSII), and mesophyll conductance (gm). Additionally, all plants were harvested to compare differences in above-ground biomass. Overall, transformants did not perform better than the WT on photosynthesis-, biomass-, and leaf composition-related traits. This is in contrast to previous studies that have suggested significant increases in photosynthesis and yield with the overexpression of ictB, although not widely evaluated under field conditions. These findings suggest that the benefit of ictB is not universal and may only be seen under certain growth conditions. While there is certainly still potential benefit to utilizing ictB in the future, further effort must be concentrated on understanding the underlying function of the gene and in which environmental conditions it offers the greatest benefit to crop performance. As it stands at present, it is possible that ictB overexpression may be largely favorable in controlled environments, such as greenhouses.


Asunto(s)
Carbono , Nicotiana , Biomasa , Dióxido de Carbono , Clorofila , Fotosíntesis/genética , Hojas de la Planta , Plantas Modificadas Genéticamente/genética , Nicotiana/genética
14.
Ann Oncol ; 33(8): 804-813, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35525376

RESUMEN

BACKGROUND: High CD103+ intratumoral immune cell (ITIC) abundance is associated with better prognosis in unselected patients with human papilloma virus-associated oropharyngeal squamous cell carcinoma (HPV-associated OPSCC) treated with cisplatin and radiotherapy (CIS/RT). Substituting cetuximab (CETUX) for CIS with RT in HPV-associated OPSCC resulted in inferior efficacy. Our aim was to determine whether quantification of CD103 ITIC could be used to identify a population of HPV-associated OPSCC with superior prognosis. PATIENTS AND METHODS: We pooled data from the TROG 12.01 and De-ESCALaTE randomized trials that compared CETUX/70GyRT with CIS/70GyRT in low-risk HPV-associated OPSCC: American Joint Committee on Cancer 7 stage III (excluding T1-2N1) or stage IV (excluding N2b-c if smoking history >10 pack-years and/or distant metastases), including all patients with available tumor samples. The primary endpoint was failure-free survival (FFS) in patients receiving CETUX/RT comparing CD103+ ITIC high (≥30%) versus low (<30%). High and low CD103 were compared using Cox regression adjusting for age, stage and trial. RESULTS: Tumor samples were available in 159/182 patients on TROG 12.01 and 145/334 on De-ESCALaTE. CD103+ ITIC abundance was high in 27% of patients. The median follow-up was 3.2 years. The 3-year FFS in patients treated with CETUX/RT was 93% [95% confidence interval (CI) 79% to 98%] in high CD103 and 74% (95% CI 63% to 81%) in low CD103 [adjusted hazard ratio = 0.22 (95% CI 0.12-0.41), P < 0.001]. The 3-year overall survival in patients treated with CETUX/RT was 100% in high CD103 and 86% (95% CI 76% to 92%) in low CD103, P < 0.001. In patients treated with CIS/RT, there was no significant difference in FFS. CONCLUSIONS: CD103+ ITIC expression separates CETUX/RT-treated low-risk HPV-associated OPSCC into excellent and poor prognosis subgroups. The high CD103 population is a rational target for de-intensification trials.


Asunto(s)
Neoplasias de Cabeza y Cuello , Neoplasias Orofaríngeas , Infecciones por Papillomavirus , Cetuximab , Neoplasias de Cabeza y Cuello/complicaciones , Humanos , Neoplasias Orofaríngeas/patología , Papillomaviridae , Infecciones por Papillomavirus/complicaciones , Pronóstico , Ensayos Clínicos Controlados Aleatorios como Asunto
15.
Transl Psychiatry ; 12(1): 12, 2022 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-35013133

RESUMEN

Ketamine has rapid and sustained antidepressant effects in patients with treatment-resistant depression (TRD). However, the underlying mechanisms of action are not well understood. There is increasing evidence that TRD is associated with a pro-inflammatory state and that ketamine may inhibit inflammatory processes. We thus investigated whole blood transcriptional profiles related to TRD and gene expression changes associated with treatment response to ketamine. Whole blood was collected at baseline (21 healthy controls [HC], 26 patients with TRD) and then again in patients with TRD 24 hours following a single intravenous infusion of ketamine (0.5 mg/kg). We performed RNA-sequencing and analyzed (a) baseline transcriptional profiles between patients with TRD and HC, (b) responders vs. non-responders before ketamine treatment, and (c) gene expression signatures associated with clinical improvement. At baseline, patients with TRD compared to HC showed a gene expression signature indicative of interferon signaling pathway activation. Prior to ketamine administration, the metabotropic glutamate receptor gene GRM2 and the ionotropic glutamate receptor gene GRIN2D were upregulated in responders compared to non-responders. Response to ketamine was associated with a distinct transcriptional signature, however, we did not observe gene expression changes indicative of an anti-inflammatory effect. Future studies are needed to determine the role of the peripheral immune system in the antidepressant effect of ketamine.


Asunto(s)
Trastorno Depresivo Resistente al Tratamiento , Ketamina , Antidepresivos/uso terapéutico , Trastorno Depresivo Resistente al Tratamiento/tratamiento farmacológico , Trastorno Depresivo Resistente al Tratamiento/genética , Humanos , Infusiones Intravenosas , Ketamina/uso terapéutico
16.
J Autism Dev Disord ; 52(9): 3919-3932, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34505185

RESUMEN

Autism spectrum disorder (ASD) is a developmental disorder characterised by deficits in social interactions and communication, with stereotypical and repetitive behaviours. Recent evidence suggests that maternal immune dysregulation may predispose offspring to ASD. Independent samples t-tests revealed downregulation of IL-17A concentrations in cases, when compared to controls, at both 15 weeks (p = 0.02), and 20 weeks (p = 0.02), which persisted at 20 weeks following adjustment for confounding variables. This adds to the growing body of evidence that maternal immune regulation may play a role in foetal neurodevelopment.


Asunto(s)
Trastorno del Espectro Autista , Niño , Citocinas , Femenino , Humanos , Madres , Embarazo
17.
Biotechnol J ; 17(4): e2100401, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34921593

RESUMEN

Mechanical stimulation plays in an important role in regulating stem cell differentiation and their release of extracellular vesicles (EVs). In this study, effects of low magnitude hydrostatic pressure (HP) on the chondrogenic differentiation and microvesicle release from human embryonic stem cells (hESCs) and human bone marrow stem cells (hBMSCs) are examined. hESCs were differentiated into chondroprogenitors and then embedded in fibrin gels and subjected to HP (270 kPa, 1 Hz, 5 days per week). hBMSC pellets were differentiated in chondrogenic media and subjected to the same regime. HP significantly enhanced ACAN expression in hESCs. It also led to a significant increase in DNA content, sGAG content and total sGAG/DNA level in hBMSCs. Furthermore, HP significantly increased microvesicle protein content released from both cell types. These results highlight the benefit of HP bioreactor in promoting chondrogenesis and EV production for cartilage tissue engineering.


Asunto(s)
Condrogénesis , Células Madre Mesenquimatosas , Células de la Médula Ósea , Diferenciación Celular , Células Cultivadas , Humanos , Presión Hidrostática
18.
Elife ; 102021 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-34581271

RESUMEN

Social hierarchy formation is strongly evolutionarily conserved. Across species, rank within social hierarchy has large effects on health and behavior. To investigate the relationship between social rank and stress susceptibility, we exposed ranked male and female mice to social and non-social stressors and manipulated social hierarchy position. We found that rank predicts same sex social stress outcomes: dominance in males and females confers resilience while subordination confers susceptibility. Pre-existing rank does not predict non-social stress outcomes in females and weakly does so in males, but rank emerging under stress conditions reveals social interaction deficits in male and female subordinates. Both history of winning and rank of cage mates affect stress susceptibility in males: rising to the top rank through high mobility confers resilience and mice that lose dominance lose stress resilience, although gaining dominance over a subordinate animal does not confer resilience. Overall, we have demonstrated a relationship between social status and stress susceptibility, particularly when taking into account individual history of winning and the overall hierarchy landscape in male and female mice.


Asunto(s)
Jerarquia Social , Ratones/psicología , Estrés Psicológico , Adaptación Psicológica , Animales , Conducta Animal , Femenino , Masculino , Ratones Endogámicos C57BL , Distancia Psicológica , Predominio Social
19.
BMJ ; 374: n1857, 2021 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-34389547

RESUMEN

OBJECTIVE: To determine whether the addition of placental growth factor (PlGF) measurement to current clinical assessment of women with suspected pre-eclampsia before 37 weeks' gestation would reduce maternal morbidity without increasing neonatal morbidity. DESIGN: Stepped wedge cluster randomised control trial from 29 June 2017 to 26 April 2019. SETTING: National multisite trial in seven maternity hospitals throughout the island of Ireland PARTICIPANTS: Women with a singleton pregnancy between 20+0 to 36+6 weeks' gestation, with signs or symptoms suggestive of evolving pre-eclampsia. Of the 5718 women screened, 2583 were eligible and 2313 elected to participate. INTERVENTION: Participants were assigned randomly to either usual care or to usual care plus the addition of point-of-care PlGF testing based on the randomisation status of their maternity hospital at the time point of enrolment. MAIN OUTCOMES MEASURES: Co-primary outcomes of composite maternal morbidity and composite neonatal morbidity. Analysis was on an individual participant level using mixed-effects Poisson regression adjusted for time effects (with robust standard errors) by intention-to-treat. RESULTS: Of the 4000 anticipated recruitment target, 2313 eligible participants (57%) were enrolled, of whom 2219 (96%) were included in the primary analysis. Of these, 1202 (54%) participants were assigned to the usual care group, and 1017 (46%) were assigned the intervention of additional point-of-care PlGF testing. The results demonstrate that the integration of point-of-care PlGF testing resulted in no evidence of a difference in maternal morbidity-457/1202 (38%) of women in the control group versus 330/1017 (32%) of women in the intervention group (adjusted risk ratio (RR) 1.01 (95% CI 0.76 to 1.36), P=0.92)-or in neonatal morbidity-527/1202 (43%) of neonates in the control group versus 484/1017 (47%) in the intervention group (adjusted RR 1.03 (0.89 to 1.21), P=0.67). CONCLUSIONS: This was a pragmatic evaluation of an interventional diagnostic test, conducted nationally across multiple sites. These results do not support the incorporation of PlGF testing into routine clinical investigations for women presenting with suspected preterm pre-eclampsia, but nor do they exclude its potential benefit. TRIAL REGISTRATION: ClinicalTrials.gov NCT02881073.


Asunto(s)
Mortalidad Materna/tendencias , Factor de Crecimiento Placentario/metabolismo , Pruebas en el Punto de Atención/normas , Preeclampsia/diagnóstico , Adulto , Biomarcadores/sangre , Estudios de Casos y Controles , Análisis por Conglomerados , Femenino , Edad Gestacional , Humanos , Lactante , Mortalidad Infantil/tendencias , Recién Nacido , Irlanda , Evaluación de Resultado en la Atención de Salud , Factor de Crecimiento Placentario/sangre , Pruebas en el Punto de Atención/estadística & datos numéricos , Preeclampsia/sangre , Preeclampsia/etnología , Embarazo
20.
BJOG ; 128(2): 411-419, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32946654

RESUMEN

OBJECTIVE: To develop a dichorionic twin pregnancy specific reference range for placental growth factor (PlGF), and to compare gestation-specific placental growth factor levels in twin pregnancies later complicated by pre-eclampsia, hypertensive disorder of pregnancy or fetal growth restriction with control pregnancies. DESIGN: Prospective observational study. SETTING: Single large tertiary maternity unit in Ireland. POPULATION OR SAMPLE: Women with a twin pregnancy. METHODS: Consenting pregnant women, across a variety of gestations, had a single blood sample taken at one time-point only during their pregnancy. The plasma was initially biobanked and PlGF was measured later in batches using the point of care Triage® PlGF test. MAIN OUTCOME MEASURES: Development of pre-eclampsia, hypertensive disorder of pregnancy or fetal growth restriction. RESULTS: Placental growth factor levels in uncomplicated dichorionic twin pregnancies were significantly lower in the women who later developed pre-eclampsia than in the controls at all gestational intervals. In those that later developed any hypertensive disorder of pregnancy, median PlGF was lower only in those recruited before 24 weeks of gestation, whereas in infants with a customised birthweight below the third centile, PlGF was lower only in those sampled after 24 weeks of gestation. CONCLUSIONS: Placental growth factor levels in twin pregnancy differ significantly between those women with a pregnancy that will later be complicated by pre-eclampsia and those that will not. This difference is present many weeks before clinical signs or symptoms of disease are present. Using cross-sectional values from uncomplicated twin pregnancies, we have developed a dichorionic twin pregnancy specific reference range for PlGF. TWEETABLE ABSTRACT: Placental growth factor levels in twin pregnancy differ significantly between women that will later develop pre-eclampsia and those that will not.


Asunto(s)
Retardo del Crecimiento Fetal/sangre , Factor de Crecimiento Placentario/sangre , Preeclampsia/sangre , Adulto , Estudios de Casos y Controles , Corion , Femenino , Edad Gestacional , Humanos , Embarazo , Embarazo Gemelar , Estudios Prospectivos , Valores de Referencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA