Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Dis Primers ; 10(1): 71, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39327441

RESUMEN

Non-small-cell lung cancer (NSCLC) is one of the most frequent cancer types and is responsible for the majority of cancer-related deaths worldwide. The management of NSCLC has improved considerably, especially in the past 10 years. The systematic screening of populations at risk with low-dose CT, the implementation of novel surgical and radiotherapeutic techniques and a deeper biological understanding of NSCLC that has led to innovative systemic treatment options have improved the prognosis of patients with NSCLC. In non-metastatic NSCLC, the combination of various perioperative strategies and adjuvant immunotherapy in locally advanced disease seem to enhance cure rates. In metastatic NSCLC, the implementation of novel drugs might prolong disease control together with preserving quality of life. The further development of predictive clinical and genetic markers will be essential for the next steps in individualized treatment concepts.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/fisiopatología , Calidad de Vida/psicología , Pronóstico , Inmunoterapia/métodos
3.
Lung Cancer ; 194: 107860, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002492

RESUMEN

BACKGROUND: ROS1 fusion is a relatively low prevalence (0.6-2.0%) but targetable driver in lung adenocarcinoma (LUAD). Robust and low-cost tests, such as immunohistochemistry (IHC), are desirable to screen for patients potentially harboring this fusion. The aim was to investigate the prevalence of ROS1 fusions in a clinically annotated European stage I-III LUAD cohort using IHC screening with the in vitro diagnostics (IVD)-marked clone SP384, followed by confirmatory molecular analysis in pre-defined subsets. METHODS: Resected LUADs constructed in tissue microarrays, were immunostained for ROS1 expression using SP384 clone in a ready-to-use kit and Ventana immunostainers. After external quality control, analysis was performed by trained pathologists. Staining intensity of at least 2+ (any percentage of tumor cells) was considered IHC positive (ROS1 IHC + ). Subsequently, ROS1 IHC + cases were 1:1:1 matched with IHC0 and IHC1 + cases and subjected to orthogonal ROS1 FISH and RNA-based testing. RESULTS: The prevalence of positive ROS1 expression (ROS1 IHC + ), defined as IHC 2+/3+, was 4 % (35 of 866 LUADs). Twenty-eight ROS1 IHC + cases were analyzed by FISH/RNA-based testing, with only two harboring a confirmed ROS1 gene fusion, corresponding to a lower limit for the prevalence of ROS1 gene fusion of 0.23 %. They represent a 7 % probability of identifying a fusion among ROS1 IHC + cases. Both confirmed cases were among the only four with sufficient material and H-score ≥ 200, leading to a 50 % probability of identifying a ROS1 gene fusion in cases with an H-score considered strongly positive. All matched ROS1 IHC- (IHC0 and IHC1 + ) cases were also found negative by FISH/RNA-based testing, leading to a 100 % probability of lack of ROS1 fusion for ROS1 IHC- cases. CONCLUSIONS: The prevalence of ROS1 fusion in an LUAD stage I-III European cohort was relatively low. ROS1 IHC using SP384 clone is useful for exclusion of ROS1 gene fusion negative cases.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Estadificación de Neoplasias , Proteínas Tirosina Quinasas , Proteínas Proto-Oncogénicas , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/cirugía , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Adenocarcinoma del Pulmón/cirugía , Adenocarcinoma del Pulmón/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Masculino , Femenino , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo , Persona de Mediana Edad , Anciano , Inmunohistoquímica , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Europa (Continente) , Proteínas de Fusión Oncogénica/genética , Proteínas de Fusión Oncogénica/metabolismo , Adulto , Hibridación Fluorescente in Situ
4.
Crit Rev Oncol Hematol ; 200: 104401, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815876

RESUMEN

Several observations indicate that protein expression analysis by immunohistochemistry (IHC) remains relevant in individuals with non-small-cell lung cancer (NSCLC) when considering targeted therapy, as an early step in diagnosis and for therapy selection. Since the advent of next-generation sequencing (NGS), the role of IHC in testing for NSCLC biomarkers has been forgotten or ignored. We discuss how protein-level investigations maintain a critical role in defining sensitivity to lung cancer therapies in oncogene- and non-oncogene-addicted cases and in patients eligible for immunotherapy, suggesting that IHC testing should be reconsidered in clinical practice. We also argue how a panel of IHC tests should be considered complementary to NGS and other genomic assays. This is relevant to current clinical diagnostic practice but with potential future roles to optimize the selection of patients for innovative therapies. At the same time, strict validation of antibodies, assays, scoring systems, and intra- and interobserver reproducibility is needed.


Asunto(s)
Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas , Inmunohistoquímica , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Inmunohistoquímica/métodos , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunoterapia/métodos
5.
Nat Med ; 30(1): 218-228, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37903504

RESUMEN

Neoadjuvant immunotherapy plus chemotherapy improves event-free survival (EFS) and pathologic complete response (0% residual viable tumor (RVT) in primary tumor (PT) and lymph nodes (LNs)), and is approved for treatment of resectable lung cancer. Pathologic response assessment after neoadjuvant therapy is the potential analog to radiographic response for advanced disease. However, %RVT thresholds beyond pathologic complete response and major pathologic response (≤10% RVT) have not been explored. Pathologic response was prospectively assessed in the randomized, phase 3 CheckMate 816 trial (NCT02998528), which evaluated neoadjuvant nivolumab (anti-programmed death protein 1) plus chemotherapy in patients with resectable lung cancer. RVT, regression and necrosis were quantified (0-100%) in PT and LNs using a pan-tumor scoring system and tested for association with EFS in a prespecified exploratory analysis. Regardless of LN involvement, EFS improved with 0% versus >0% RVT-PT (hazard ratio = 0.18). RVT-PT predicted EFS for nivolumab plus chemotherapy (area under the curve = 0.74); 2-year EFS rates were 90%, 60%, 57% and 39% for patients with 0-5%, >5-30%, >30-80% and >80% RVT, respectively. Each 1% RVT associated with a 0.017 hazard ratio increase for EFS. Combining pathologic response from PT and LNs helped differentiate outcomes. When compared with radiographic response and circulating tumor DNA clearance, %RVT best approximated EFS. These findings support pathologic response as an emerging survival surrogate. Further assessment of the full spectrum of %RVT in lung cancer and other tumor types is warranted. ClinicalTrials.gov registration: NCT02998528 .


Asunto(s)
Neoplasias Pulmonares , Terapia Neoadyuvante , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Ensayos Clínicos Fase III como Asunto , Neoplasias Pulmonares/tratamiento farmacológico , Nivolumab/uso terapéutico , Respuesta Patológica Completa , Supervivencia sin Progresión , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento
6.
Histopathology ; 84(3): 429-439, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37957137

RESUMEN

Many patients with non-small cell lung cancer do not receive guideline-recommended, biomarker-directed therapy, despite the potential for improved clinical outcomes. Access to timely, accurate, and comprehensive molecular profiling, including targetable protein overexpression, is essential to allow fully informed treatment decisions to be taken. In turn, this requires optimal tissue management to protect and maximize the use of this precious finite resource. Here, a group of leading thoracic pathologists recommend factors to consider for optimal tissue management. Starting from when lung cancer is first suspected, keeping predictive biomarker testing in the front of the mind should drive the development of practices and procedures that conserve tissue appropriately to support molecular characterization and treatment selection.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/terapia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/tratamiento farmacológico , Patólogos , Biomarcadores de Tumor/metabolismo , Terapia Molecular Dirigida
7.
J Clin Pathol ; 77(2): 135-139, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36604178

RESUMEN

AIMS: Programmed cell death ligand 1 (PD-L1) expression, used universally to predict response of non-small cell lung cancer (NSCLC) to immune-modulating drugs, is a fragile biomarker due to biological heterogeneity and challenges in interpretation. The aim of this study was to assess current PD-L1 testing practices in the UK, which may help to define strategies to improve its reliability and consistency. METHODS: A questionnaire covering NSCLC PD-L1 testing practice was devised and members of the Association of Pulmonary Pathologists were invited to complete this online. RESULTS: Of 44 pathologists identified as involved in PD-L1 testing, 32 (73%) responded. There was good consistency in practice and approach, but there was wide variability in the distribution of PD-L1 scoring. Although the proportions of scores falling into the three groups (negative, low and high) defined by the 1% and 50% 'cut-offs' (38%, 33% and 27%, respectively) reflect the general experience, the range within each group was wide at 23-70%, 10-60% and 15-36%, respectively. CONCLUSIONS: There is inconsistency in the crucial endpoint of PD-L1 testing of NSCLC, the expression score that guides management. Addressing this requires formal networking of individuals and laboratories to devise a strategy for its reduction.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/metabolismo , Antígeno B7-H1/metabolismo , Reproducibilidad de los Resultados , Inmunohistoquímica , Reino Unido , Biomarcadores de Tumor
8.
Lung Cancer ; 184: 107293, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37683526

RESUMEN

KRAS is the most commonly mutated oncogene in advanced, non-squamous, non-small cell lung cancer (NSCLC) in Western countries. Of the various KRAS mutants, KRAS G12C is the most common variant (~40%), representing 10-13% of advanced non-squamous NSCLC. Recent regulatory approvals of the KRASG12C-selective inhibitors sotorasib and adagrasib for patients with advanced or metastatic NSCLC harboring KRASG12C have transformed KRAS into a druggable target. In this review, we explore the evolving role of KRAS from a prognostic to a predictive biomarker in advanced NSCLC, discussing KRAS G12C biology, real-world prevalence, clinical relevance of co-mutations, and approaches to molecular testing. Real-world evidence demonstrates significant geographic differences in KRAS G12C prevalence (8.9-19.5% in the US, 9.3-18.4% in Europe, 6.9-9.0% in Latin America, and 1.4-4.3% in Asia) in advanced NSCLC. Additionally, the body of clinical data pertaining to KRAS G12C co-mutations such as STK11, KEAP1, and TP53 is increasing. In real-world evidence, KRAS G12C-mutant NSCLC was associated with STK11, KEAP1, and TP53 co-mutations in 10.3-28.0%, 6.3-23.0%, and 17.8-50.0% of patients, respectively. Whilst sotorasib and adagrasib are currently approved for use in the second-line setting and beyond for patients with advanced/metastatic NSCLC, testing and reporting of the KRAS G12C variant should be included in routine biomarker testing prior to first-line therapy. KRAS G12C test results should be clearly documented in patients' health records for actionability at progression. Where available, next-generation sequencing is recommended to facilitate simultaneous testing of potentially actionable biomarkers in a single run to conserve tissue. Results from molecular testing should inform clinical decisions in treating patients with KRAS G12C-mutated advanced NSCLC.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Carcinoma de Pulmón de Células no Pequeñas/epidemiología , Carcinoma de Pulmón de Células no Pequeñas/genética , Proteína 1 Asociada A ECH Tipo Kelch , Proteínas Proto-Oncogénicas p21(ras)/genética , Prevalencia , Neoplasias Pulmonares/epidemiología , Neoplasias Pulmonares/genética , Factor 2 Relacionado con NF-E2 , Mutación/genética
9.
Nature ; 616(7957): 534-542, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046095

RESUMEN

Metastatic disease is responsible for the majority of cancer-related deaths1. We report the longitudinal evolutionary analysis of 126 non-small cell lung cancer (NSCLC) tumours from 421 prospectively recruited patients in TRACERx who developed metastatic disease, compared with a control cohort of 144 non-metastatic tumours. In 25% of cases, metastases diverged early, before the last clonal sweep in the primary tumour, and early divergence was enriched for patients who were smokers at the time of initial diagnosis. Simulations suggested that early metastatic divergence more frequently occurred at smaller tumour diameters (less than 8 mm). Single-region primary tumour sampling resulted in 83% of late divergence cases being misclassified as early, highlighting the importance of extensive primary tumour sampling. Polyclonal dissemination, which was associated with extrathoracic disease recurrence, was found in 32% of cases. Primary lymph node disease contributed to metastatic relapse in less than 20% of cases, representing a hallmark of metastatic potential rather than a route to subsequent recurrences/disease progression. Metastasis-seeding subclones exhibited subclonal expansions within primary tumours, probably reflecting positive selection. Our findings highlight the importance of selection in metastatic clone evolution within untreated primary tumours, the distinction between monoclonal versus polyclonal seeding in dictating site of recurrence, the limitations of current radiological screening approaches for early diverging tumours and the need to develop strategies to target metastasis-seeding subclones before relapse.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Evolución Clonal , Células Clonales , Evolución Molecular , Neoplasias Pulmonares , Metástasis de la Neoplasia , Humanos , Carcinoma de Pulmón de Células no Pequeñas/patología , Células Clonales/patología , Estudios de Cohortes , Progresión de la Enfermedad , Neoplasias Pulmonares/patología , Metástasis de la Neoplasia/diagnóstico , Metástasis de la Neoplasia/patología , Recurrencia Local de Neoplasia
10.
Nature ; 616(7957): 525-533, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37046096

RESUMEN

Lung cancer is the leading cause of cancer-associated mortality worldwide1. Here we analysed 1,644 tumour regions sampled at surgery or during follow-up from the first 421 patients with non-small cell lung cancer prospectively enrolled into the TRACERx study. This project aims to decipher lung cancer evolution and address the primary study endpoint: determining the relationship between intratumour heterogeneity and clinical outcome. In lung adenocarcinoma, mutations in 22 out of 40 common cancer genes were under significant subclonal selection, including classical tumour initiators such as TP53 and KRAS. We defined evolutionary dependencies between drivers, mutational processes and whole genome doubling (WGD) events. Despite patients having a history of smoking, 8% of lung adenocarcinomas lacked evidence of tobacco-induced mutagenesis. These tumours also had similar detection rates for EGFR mutations and for RET, ROS1, ALK and MET oncogenic isoforms compared with tumours in never-smokers, which suggests that they have a similar aetiology and pathogenesis. Large subclonal expansions were associated with positive subclonal selection. Patients with tumours harbouring recent subclonal expansions, on the terminus of a phylogenetic branch, had significantly shorter disease-free survival. Subclonal WGD was detected in 19% of tumours, and 10% of tumours harboured multiple subclonal WGDs in parallel. Subclonal, but not truncal, WGD was associated with shorter disease-free survival. Copy number heterogeneity was associated with extrathoracic relapse within 1 year after surgery. These data demonstrate the importance of clonal expansion, WGD and copy number instability in determining the timing and patterns of relapse in non-small cell lung cancer and provide a comprehensive clinical cancer evolutionary data resource.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/etiología , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/patología , Carcinoma de Pulmón de Células no Pequeñas/etiología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Neoplasias Pulmonares/etiología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Recurrencia Local de Neoplasia/genética , Filogenia , Resultado del Tratamiento , Fumar/genética , Fumar/fisiopatología , Mutagénesis , Variaciones en el Número de Copia de ADN
11.
J Mol Cell Cardiol ; 174: 25-37, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36336008

RESUMEN

Aortic valve stenosis is the most common valve disease in the western world. Central to the pathogenesis of this disease is the growth of new blood vessels (angiogenesis) within the aortic valve allowing infiltration of immune cells and development of intra-valve inflammation. Identifying the cellular mediators involved in this angiogenesis is important as this may reveal new therapeutic targets which could ultimately prevent the progression of aortic valve stenosis. Aortic valves from patients undergoing surgery for aortic valve replacement or dilation of the aortic arch were examined both ex vivo and in vitro. We now demonstrate that the anti-angiogenic protein, soluble fms-like tyrosine kinase 1 (sFlt1), a non-signalling soluble receptor for vascular endothelial growth factor, is constitutively expressed in non-diseased valves. sFlt-1 expression was, however, significantly reduced in aortic valve tissue from patients with aortic valve stenosis while protein markers of hypoxia were simultaneously increased. Exposure of primary-cultured valve interstitial cells to hypoxia resulted in a decrease in the expression of sFlt-1. We further reveal using a bioassay that siRNA knock-down of sFlt1 in valve interstitial cells directly results in a pro-angiogenic environment. Finally, incubation of aortic valves with sphingosine 1-phosphate, a bioactive lipid-mediator, increased sFlt-1 expression and inhibited angiogenesis within valve tissue. In conclusion, this study demonstrates that sFlt1 expression is directly correlated with angiogenesis in aortic valves and the observed decrease in sFlt-1 expression in aortic valve stenosis could increase valve inflammation, promoting disease progression. This could be a viable therapeutic target in treating this disease.


Asunto(s)
Estenosis de la Válvula Aórtica , Receptor 1 de Factores de Crecimiento Endotelial Vascular , Humanos , Receptor 1 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 1 de Factores de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Estenosis de la Válvula Aórtica/metabolismo , Válvula Aórtica/patología , Inflamación/patología , Hipoxia/metabolismo
12.
J Thorac Oncol ; 18(4): 447-462, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36503176

RESUMEN

INTRODUCTION: Since the eight edition of the Union for International Cancer Control and American Joint Committee on Cancer TNM classification system, the primary tumor pT stage is determined on the basis of presence and size of the invasive components. The aim of this study was to identify histologic features in tumors with lepidic growth pattern which may be used to establish criteria for distinguishing invasive from noninvasive areas. METHODS: A Delphi approach was used with two rounds of blinded anonymized analysis of resected nonmucinous lung adenocarcinoma cases with presumed invasive and noninvasive components, followed by one round of reviewer de-anonymized and unblinded review of cases with known outcomes. A digital pathology platform was used for measuring total tumor size and invasive tumor size. RESULTS: The mean coefficient of variation for measuring total tumor size and tumor invasive size was 6.9% (range: 1.7%-22.3%) and 54% (range: 14.7%-155%), respectively, with substantial variations in interpretation of the size and location of invasion among pathologists. Following the presentation of the results and further discussion among members at large of the International Association for the Study of Lung Cancer Pathology Committee, extensive epithelial proliferation (EEP) in areas of collapsed lepidic growth pattern is recognized as a feature likely to be associated with invasive growth. The EEP is characterized by multilayered luminal epithelial cell growth, usually with high-grade cytologic features in several alveolar spaces. CONCLUSIONS: Collapsed alveoli and transition zones with EEP were identified by the Delphi process as morphologic features that were a source of interobserver variability. Definition criteria for collapse and EEP are proposed to improve reproducibility of invasion measurement.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Reproducibilidad de los Resultados , Invasividad Neoplásica/patología , Adenocarcinoma del Pulmón/patología , Adenocarcinoma/patología , Estadificación de Neoplasias
13.
J Thorac Oncol ; 17(12): 1335-1354, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36184066

RESUMEN

Immunotherapy including immune checkpoint inhibitors (ICIs) has become the backbone of treatment for most lung cancers with advanced or metastatic disease. In addition, they have increasingly been used for early stage tumors in neoadjuvant and adjuvant settings. Unfortunately, however, only a subset of patients experiences meaningful response to ICIs. Although programmed death-ligand 1 (PD-L1) protein expression by immunohistochemistry (IHC) has played a role as the principal predictive biomarker for immunotherapy, its performance may not be optimal, and it suffers multiple practical issues with different companion diagnostic assays approved. Similarly, tumor mutational burden (TMB) has multiple technical issues as a predictive biomarker for ICIs. Now, ongoing research on tumor- and host immune-specific factors has identified immunotherapy biomarkers that may provide better response and prognosis prediction, in particular in a multimodal approach. This review by the International Association for the Study of Lung Cancer Pathology Committee provides an overview of various immunotherapy biomarkers, including updated data on PD-L1 IHC and TMB, and assessments of neoantigens, genetic and epigenetic signatures, immune microenvironment by IHC and transcriptomics, and microbiome and pathologic response to neoadjuvant immunotherapies. The aim of this review is to underline the efficacy of new individual or combined predictive biomarkers beyond PD-L1 IHC and TMB.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patología , Antígeno B7-H1 , Carcinoma de Pulmón de Células no Pequeñas/patología , Inmunoterapia , Biomarcadores de Tumor/genética , Microambiente Tumoral
14.
Virchows Arch ; 481(3): 335-350, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35857102

RESUMEN

Biomarker testing is crucial for treatment selection in advanced non-small cell lung cancer (NSCLC). However, the quantity of available tissue often presents a key constraint for patients with advanced disease, where minimally invasive tissue biopsy typically returns small samples. In Part 1 of this two-part series, we summarise evidence-based recommendations relating to small sample processing for patients with NSCLC. Generally, tissue biopsy techniques that deliver the greatest quantity and quality of tissue with the least risk to the patient should be selected. Rapid on-site evaluation can help to ensure sufficient sample quality and quantity. Sample processing should be managed according to biomarker testing requirements, because tissue fixation methodology influences downstream nucleic acid, protein and morphological analyses. Accordingly, 10% neutral buffered formalin is recommended as an appropriate fixative, and the duration of fixation is recommended not to exceed 24-48 h. Tissue sparing techniques, including the 'one biopsy per block' approach and small sample cutting protocols, can help preserve tissue. Cytological material (formalin-fixed paraffin-embedded [FFPE] cytology blocks and non-FFPE samples such as smears and touch preparations) can be an excellent source of nucleic acid, providing either primary or supplementary patient material to complete morphological and molecular diagnoses. Considerations on biomarker testing, reporting and quality assessment are discussed in Part 2.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Ácidos Nucleicos , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/patología , Testimonio de Experto , Fijadores , Formaldehído , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/patología , Adhesión en Parafina , Fijación del Tejido/métodos
15.
Virchows Arch ; 481(3): 351-366, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35857103

RESUMEN

The diagnostic work-up for non-small cell lung cancer (NSCLC) requires biomarker testing to guide therapy choices. This article is the second of a two-part series. In Part 1, we summarised evidence-based recommendations for obtaining and processing small specimen samples (i.e. pre-analytical steps) from patients with advanced NSCLC. Here, in Part 2, we summarise evidence-based recommendations relating to analytical steps of biomarker testing (and associated reporting and quality assessment) of small specimen samples in NSCLC. As the number of biomarkers for actionable (genetic) targets and approved targeted therapies continues to increase, simultaneous testing of multiple actionable oncogenic drivers using next-generation sequencing (NGS) becomes imperative, as set forth in European Society for Medical Oncology guidelines. This is particularly relevant in advanced NSCLC, where tissue specimens are typically limited and NGS may help avoid tissue exhaustion compared with sequential biomarker testing. Despite guideline recommendations, significant discrepancies in access to NGS persist across Europe, primarily due to reimbursement constraints. The use of increasingly complex testing methods also has implications for the reporting of results. Molecular testing reports should include clinical interpretation with additional commentary on sample adequacy as appropriate. Molecular tumour boards are recommended to facilitate the interpretation of complex genetic information arising from NGS, and to collaboratively determine the optimal treatment for patients with NSCLC. Finally, whichever testing modality is employed, it is essential that adequate internal and external validation and quality control measures are implemented.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Biomarcadores , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Testimonio de Experto , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Mutación
16.
J Thorac Oncol ; 17(3): 362-387, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34808341

RESUMEN

The 2021 WHO Classification of Thoracic Tumours was published earlier this year, with classification of lung tumors being one of the chapters. The principles remain those of using morphology first, supported by immunohistochemistry, and then molecular techniques. In 2015, there was particular emphasis on using immunohistochemistry to make classification more accurate. In 2021, there is greater emphasis throughout the book on advances in molecular pathology across all tumor types. Major features within this edition are (1) broader emphasis on genetic testing than in the 2015 WHO Classification; (2) a section entirely dedicated to the classification of small diagnostic samples; (3) continued recommendation to document percentages of histologic patterns in invasive nonmucinous adenocarcinomas, with utilization of these features to apply a formal grading system, and using only invasive size for T-factor size determination in part lepidic nonmucinous lung adenocarcinomas as recommended by the eighth edition TNM classification; (4) recognition of spread through airspaces as a histologic feature with prognostic significance; (5) moving lymphoepithelial carcinoma to squamous cell carcinomas; (6) update on evolving concepts in lung neuroendocrine neoplasm classification; (7) recognition of bronchiolar adenoma/ciliated muconodular papillary tumor as a new entity within the adenoma subgroup; (8) recognition of thoracic SMARCA4-deficient undifferentiated tumor; and (9) inclusion of essential and desirable diagnostic criteria for each tumor.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Adenoma , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Adenocarcinoma/patología , ADN Helicasas , Humanos , Neoplasias Pulmonares/patología , Proteínas Nucleares , Factores de Transcripción , Organización Mundial de la Salud
17.
Lung Cancer ; 162: 42-53, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34739853

RESUMEN

Precision medicine in non-small cell lung cancer (NSCLC) is a rapidly evolving area, with the development of targeted therapies for advanced disease and concomitant molecular testing to inform clinical decision-making. In contrast, routine molecular testing in stage I-III disease has not been required, where standard of care comprises surgery with or without adjuvant or neoadjuvant chemotherapy, or concurrent chemoradiotherapy for unresectable stage III disease, without the integration of targeted therapy. However, the phase 3 ADAURA trial has recently shown that the epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI), osimertinib, reduces the risk of disease recurrence by 80% versus placebo in the adjuvant setting for patients with stage IB-IIIA EGFR mutation-positive NSCLC following complete tumor resection with or without adjuvant chemotherapy, according to physician and patient choice. Treatment with adjuvant osimertinib requires selection of patients based on the presence of an EGFR-TKI sensitizing mutation. Other targeted agents are currently being evaluated in the adjuvant and neoadjuvant settings. Approval of at least some of these other agents is highly likely in the coming years, bringing with it in parallel, a requirement for comprehensive molecular testing for stage I-III disease. In this review, we consider the implications of integrating molecular testing into practice when managing patients with stage I-III non-squamous NSCLC. We discuss best practices, approaches and challenges from pathology, surgical and oncology perspectives.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/terapia , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Técnicas de Diagnóstico Molecular , Mutación , Recurrencia Local de Neoplasia , Inhibidores de Proteínas Quinasas
18.
Lancet Reg Health Eur ; 10: 100179, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34806061

RESUMEN

BACKGROUND: The NLST reported a significant 20% reduction in lung cancer mortality with three annual low-dose CT (LDCT) screens and the Dutch-Belgian NELSON trial indicates a similar reduction. We present the results of the UKLS trial. METHODS: From October 2011 to February 2013, we randomly allocated 4 055 participants to either a single invitation to screening with LDCT or to no screening (usual care). Eligible participants (aged 50-75) had a risk score (LLPv2) ≥ 4.5% of developing lung cancer over five years. Data were collected on lung cancer cases to 31 December 2019 and deaths to 29 February 2020 through linkage to national registries. The primary outcome was mortality due to lung cancer. We included our results in a random-effects meta-analysis to provide a synthesis of the latest randomised trial evidence. FINDINGS: 1 987 participants in the intervention and 1 981 in the usual care arms were followed for a median of 7.3 years (IQR 7.1-7.6), 86 cancers were diagnosed in the LDCT arm and 75 in the control arm. 30 lung cancer deaths were reported in the screening arm, 46 in the control arm, (relative rate 0.65 [95% CI 0.41-1.02]; p=0.062). The meta-analysis indicated a significant reduction in lung cancer mortality with a pooled overall relative rate of 0.84 (95% CI 0.76-0.92) from nine eligible trials. INTERPRETATION: The UKLS trial of single LDCT indicates a reduction of lung cancer death of similar magnitude to the NELSON and NLST trials and was included in a meta-analysis of nine randomised trials which provides unequivocal support for lung cancer screening in identified risk groups. FUNDING: NIHR Health Technology Assessment programme; NIHR Policy Research programme; Roy Castle Lung Cancer Foundation.

19.
Br J Cancer ; 125(9): 1210-1216, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34489586

RESUMEN

Over the past 10 years, lung cancer clinical and translational research has been characterised by exponential progress, exemplified by the introduction of molecularly targeted therapies, immunotherapy and chemo-immunotherapy combinations to stage III and IV non-small cell lung cancer. Along with squamous and small cell lung cancers, large cell neuroendocrine carcinoma (LCNEC) now represents an area of unmet need, particularly hampered by the lack of an encompassing pathological definition that can facilitate real-world and clinical trial progress. The steps we have proposed in this article represent an iterative and rational path forward towards clinical breakthroughs that can be modelled on success in other lung cancer pathologies.


Asunto(s)
Carcinoma de Células Grandes/patología , Carcinoma Neuroendocrino/patología , Neoplasias Pulmonares/patología , Biomarcadores de Tumor/metabolismo , Carcinoma de Células Grandes/metabolismo , Carcinoma de Células Grandes/terapia , Carcinoma Neuroendocrino/metabolismo , Carcinoma Neuroendocrino/terapia , Ensayos Clínicos como Asunto , Consenso , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/terapia , Medicina de Precisión , Resultado del Tratamiento
20.
J Thorac Oncol ; 16(6): 990-1002, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33647504

RESUMEN

INTRODUCTION: KRAS mutations, the most frequent gain-of-function alterations in NSCLC, are currently emerging as potential predictive therapeutic targets. The role of KRAS-G12C (Kr_G12C) is of special interest after the recent discovery and preclinical analyses of two different Kr_G12C covalent inhibitors (AMG-510, MRTX849). METHODS: KRAS mutations were evaluated in formalin-fixed, paraffin-embedded tissue sections by a microfluidic-based multiplex polymerase chain reaction platform as a component of the previously published European Thoracic Oncology Platform Lungscape 003 Multiplex Mutation study, of clinically annotated, resected, stage I to III NSCLC. In this study, -Kr_G12C mutation prevalence and its association with clinicopathologic characteristics, molecular profiles, and postoperative patient outcome (overall survival, relapse-free survival, time-to-relapse) were explored. RESULTS: KRAS gene was tested in 2055 Lungscape cases (adenocarcinomas: 1014 [49%]) with I or II or III stage respective distribution of 53% or 24% or 22% and median follow-up of 57 months. KRAS mutation prevalence in the adenocarcinoma cohort was 38.0% (95% confidence interval (CI): 35.0% to 41.0%), with Kr_G12C mutation representing 17.0% (95% CI: 14.7% to 19.4%). In the "histologic-subtype" cohort, Kr_G12C prevalence was 10.5% (95% CI: 9.2% to 11.9%). When adjusting for clinicopathologic characteristics, a significant negative prognostic effect of Kr_G12C presence versus other KRAS mutations or nonexistence of KRAS mutation was identified in the adenocarcinoma cohort alone and in the "histologic-subtype" cohort. For overall survival in adenocarcinomas, hazard ratio (HR)G12C versus other KRAS is equal to 1.39 (95% CI: 1.03 to 1.89, p = 0.031) and HRG12C versus no KRAS is equal to 1.32 (95% CI: 1.03 to 1.69, p = 0.028) (both also significant in the "histologic-subtype" cohort). For time-to-relapse, HRG12C versus other KRAS is equal to 1.41 (95% CI: 1.03 to 1.92, p = 0.030). In addition, among all patients, for relapse-free survival, HRG12C versus no KRAS is equal to 1.27 (95% CI: 1.04 to 1.54, p = 0.017). CONCLUSIONS: In this large, clinically annotated stage I to III NSCLC cohort, the specific Kr_G12C mutation is significantly associated with poorer prognosis (adjusting for clinicopathologic characteristics) among adenocarcinomas and in unselected NSCLCs.


Asunto(s)
Neoplasias Pulmonares , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Neoplasias Pulmonares/genética , Mutación , Recurrencia Local de Neoplasia , Piperazinas , Pronóstico , Proteínas Proto-Oncogénicas p21(ras)/genética , Piridinas , Pirimidinas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA