Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int Immunopharmacol ; 139: 112733, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-39043105

RESUMEN

Psoriasis is an inflammatory immune-mediated skin disease that affects nearly 2-3 % of the global population. The current study aimed to develop safe and efficient anti-psoriatic nanoformulations from Artemisia monosperma essential oil (EO). EO was extracted using hydrodistillation (HD), microwave-assisted hydrodistillation (MAHD), and head-space solid-phase microextraction (HS-SPME), as well as GC/ MS was used for its analysis. EO nanoemulsion (NE) was prepared using the phase inversion method, while the biodegradable polymeric film (BF) was prepared using the solvent casting technique. A.monosperma EO contains a high percentage of non-oxygenated compounds, being 90.45 (HD), 82.62 (MADH), and 95.17 (HS-SPME). Acenaphthene represents the major aromatic hydrocarbon in HD (39.14 %) and MADH (48.60 %), while sabinene as monoterpene hydrocarbon (44.2 %) is the primary compound in the case of HS-SPME. The anti-psoriatic Effect of NE and BF on the successful delivery of A.monosperma EO was studied using the imiquimod (IMQ)-induced psoriatic model in mice. Five groups (n = 6 mice) were classified into control group, IMQ group, IMQ+standard group, IMQ+NE group, and IMQ+BF group. NE and BF significantly alleviated the psoriatic skin lesions and decreased the psoriasis area severity index, Baker's score, and spleen index. Also, they reduced the expression of Ki67 and attenuated the levels of tumor necrosis factor-alpha, interleukin 6, and interleukin 17. Additionally, NE and NF were able to downregulate the NF-κB and GSK-3ß signaling pathways. Despite the healing properties of BF, NE showed a more prominent effect on treating the psoriatic model, which could be referred to as its high skin penetration ability and absorption. These results potentially contribute to documenting experimental and theoretical evidence for the clinical uses of A.monosperma EO nanoformulations for treating psoriasis.

2.
Adv Radiat Oncol ; 9(8): 101527, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38993191

RESUMEN

Purpose: In patients with Wilms tumor with lung metastases, a cardiac-sparing intensity modulated radiation therapy (CS-IMRT) technique is increasingly being adopted for whole lung irradiation. However, the standard technique for flank and whole abdomen radiation remains 2-dimensional anterioposterior (AP), and overlap at the junction between the whole lung CS-IMRT and abdominal AP fields can result in overdose to normal organs. Here, we compared the dosimetry of patients who received whole lung irradiation and flank or abdominal radiation therapy with CS-IMRT with AP abdominal field (IMRT-AP) versus CS-IMRT with IMRT abdominal field (combined IMRT). Methods and Materials: We retrospectively reviewed the radiation plans of 2 patients with Wilms tumor who received CS-IMRT and flank or whole abdomen irradiation with a combined IMRT approach. Comparison IMRT-AP plans were generated with equivalent target coverage of 95% receiving the prescribed dose. Maximum doses to normal organs were compared at the junctional overlap. Results: Overlap at the junction between CS-IMRT and abdominal fields resulted in a significantly lower dose with combined IMRT plans compared with IMRT-AP plan. Differences in maximum doses (in cGy) to normal organs between combined IMRT versus IMRT-AP plans were most significant in the vertebral body (patient 1 = 1277 vs 2065; patient 2 = 1334 vs 2287), lungs (patient 1 = 1298 vs 2081; patient 2 = 1234 vs 1820), spinal cord (patient 1 = 1235 vs 1975; patient 2 = 1345 vs 2253), stomach (patient 1 = 1264 vs 1977; patient 2 = 1118 vs 2062), and liver (patient 1 = 1297 vs 1889; patient 2 = 1334 vs 2237). Conclusions: The combined IMRT approach for Wilms patients who require whole lung and abdomen irradiation can provide more uniform dose distribution in the junction area and significantly lower doses to normal organs at the junctional overlap.

3.
Eur J Pharmacol ; 976: 176667, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38795754

RESUMEN

Migraine, a debilitating neurological condition, significantly affects patients' quality of life. Fenofibrate, a peroxisome proliferator-activated receptor alpha (PPAR-α) agonist approved for managing dyslipidemia, has shown promise in treating neurological disorders. Therefore, this study aims to investigate the protective effects of fenofibrate against nitroglycerin (NTG)-induced chronic migraine in rats. Migraine was induced in rats by administering five intermittent doses of NTG (10 mg/kg, i. p.) on days 1, 3, 5, 7, and 9. Rats were treated with either topiramate (80 mg/kg/day, p. o.), a standard drug, or fenofibrate (100 mg/kg/day, p. o.) from day 1-10. Fenofibrate significantly improved mechanical and thermal hypersensitivity, photophobia, and head grooming compared to topiramate. These effects were associated with reduced serum levels of nitric oxide (NO), calcitonin gene-related peptide (CGRP), and pituitary adenylate cyclase-activating polypeptide (PACAP). Furthermore, fenofibrate down-regulated c-Fos expression in the medulla and medullary pro-inflammatory cytokine contents. Additionally, fenofibrate attenuated NTG-induced histopathological changes in the trigeminal ganglia and trigeminal nucleus caudalis. These effects were associated with the inhibition of CGRP/p-CREB/purinergic 2X receptor 3 (P2X3) and nerve growth factor (NGF)/protein kinase C (PKC)/acid-sensing ion channel 3 (ASIC3) signaling pathways. This study demonstrates that fenofibrate attenuated NTG-induced migraine-like signs in rats. These effects were partially mediated through the inhibition of CGRP/p-CREB/P2X3 and NGF/PKC/ASIC3 signaling pathways. The present study supports the idea that fenofibrate could be an effective candidate for treating migraine headache without significant adverse effects. Future studies should explore its clinical applicability.


Asunto(s)
Péptido Relacionado con Gen de Calcitonina , Proteína de Unión a Elemento de Respuesta al AMP Cíclico , Fenofibrato , Trastornos Migrañosos , Factor de Crecimiento Nervioso , Nitroglicerina , Proteína Quinasa C , Receptores Purinérgicos P2X3 , Transducción de Señal , Animales , Nitroglicerina/farmacología , Nitroglicerina/toxicidad , Péptido Relacionado con Gen de Calcitonina/metabolismo , Transducción de Señal/efectos de los fármacos , Trastornos Migrañosos/tratamiento farmacológico , Trastornos Migrañosos/inducido químicamente , Trastornos Migrañosos/metabolismo , Masculino , Fenofibrato/farmacología , Fenofibrato/uso terapéutico , Ratas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Proteína Quinasa C/metabolismo , Receptores Purinérgicos P2X3/metabolismo , Factor de Crecimiento Nervioso/metabolismo , Óxido Nítrico/metabolismo , Ratas Sprague-Dawley , Conducta Animal/efectos de los fármacos
4.
Obes Surg ; 34(3): 874-881, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38285303

RESUMEN

BACKGROUND: Despite the well-described optimal initial clinical response of sleeve gastrectomy (SG) in the treatment of obesity, some patients do not achieve optimal initial clinical response. Insulin-like growth factor-1 (IGF-1) has currently shown an association with post-bariatric surgery weight loss. This study aimed to assess the IGF-1 levels in female patients with obesity, the change after surgery, and their association with the metabolic profile and weight loss after surgery. PATIENTS AND METHODS: This was a prospective study that was conducted on adult female patients who were recruited for SG. The patients underwent clinical and laboratory investigations that included the IGF-1 measurement. At the 1-year follow-up, the same clinical and laboratory measures were repeated. RESULTS: This study included 100 female patients. At the 1-year follow-up, there was a statistically significant reduction in body mass index (BMI) (p < 0.001), fasting HbA1C levels (p < 0.001), and triglycerides (p < 0.001), as well as a statistically significant increase in HDL (p < 0.001) and IGF-1 (p < 0.001). Multiple regression analysis revealed that, among the patients baseline characteristics, the significant predictors for the percentage of total weight loss (%TWL) were the patients' BMI (p < 0.001) and IGF-1 levels (p < 0.001). The ROC curve showed that an IGF1 cutoff value of ≤ 23 ng/ml detected suboptimal initial clinical response, with a sensitivity of 95.35% and a specificity of 100%. CONCLUSION: This study underscores the significant impact of SG on weight loss and metabolic improvements in female patients. Baseline IGF-1 levels emerged as a crucial predictor of optimal initial clinical response.


Asunto(s)
Laparoscopía , Obesidad Mórbida , Adulto , Humanos , Femenino , Obesidad Mórbida/cirugía , Péptidos Similares a la Insulina , Factor I del Crecimiento Similar a la Insulina , Estudios Prospectivos , Obesidad/cirugía , Gastrectomía , Pérdida de Peso , Resultado del Tratamiento , Índice de Masa Corporal , Estudios Retrospectivos
5.
J Liposome Res ; : 1-13, 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37856332

RESUMEN

Thermoresponsive drug delivery systems have been used to treat diseases that cause hyperthermia or elevated body tissue temperatures, viz., rheumatoid arthritis and different cancers. The aim of the study was to enhance berberine (BER) release using thermosensitive nanostructured lipid carriers (TNLCs) through intra-articular administration for the management of arthritis. TNLCs were prepared using binary mixtures of stearic acid and decanoic acid as solid and liquid lipids, respectively. Lipid mixtures with an optimum melting point were assessed using differential scanning calorimetry studies. In vitro characterization of the BER TNLCs included particle size, zeta potential, entrapment efficiency, and drug release at 37 °C and 41 °C. Joint diameter measurement, real-time polymerase chain reaction (RT-PC) analysis, enzyme-linked immunosorbent assay (ELISA) for inflammatory markers, and histological evaluation of the dissected joints were all performed in vivo on rats with adjuvant-induced arthritis. In vitro characterization revealed negatively charged BER-loaded TNLCs with a spherical shape, particle size less than 500 nm, BER entrapment efficiency up to 79%, and a high drug release rate at an elevated temperature of 41 °C. In silico studies revealed the affinity of BER to different formula components and to the measured biomarkers. In vivo assessment of the optimum TNLCs showed that BER TNLCs were superior to the BER solution suspension regarding their effect on inflammatory biomarkers, joint diameter, and histological studies.

6.
Int J Pharm ; 643: 123271, 2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37499772

RESUMEN

The goal of this study was the development and evaluation of semisolid caffeine (CAF) loaded nanostructured lipid carriers (NLCs) for topical treatment of cellulite. CAF-loaded NLC formulations were prepared via high-speed homogenization followed by ultrasonication. A 32 full factorial design was employed for formulation optimization. The total lipid content (%) and the liquid lipid content per total lipids (%) were chosen as factors, whereas particle size (PS), polydispersity index (PDI), zeta potential (|ZP|) and viscosity (VIS) were selected as responses. The design suggested CAF-NLC3 as the optimum formulation consisting of a total lipid content of 15% w/w (palmitic acid and soft paraffin/isopropyl myristate, 7:3 w/w) and a surfactant content of 10% w/w (Tween 80/lecithin, 8:1.2 w/w). CAF-NLC3 revealed PS, PDI, ZP, VIS and CAF content values of 318.8 nm, 0.253, -41.1 mV, 18.0 Pa.s and 97.57%, respectively. It showed a pseudoplastic rheological behavior, acceptable pH value (5.25), good spreadability (1.12 mm2/g) and spherical shape employing transmission electron microscopy. Differential scanning calorimetry and X-ray diffraction demonstrated the amorphization of CAF in CAF-NLC3. CAF-NLC3 remained stable for 3 months at room and refrigeration conditions. A single topical application of CAF-NLC3 on shaved abdominal skins of Wistar rats revealed enhanced skin retention of CAF by 2-fold and 1.4-fold after 4 h when compared with plain CAF gel (CAF-P) and marketed CAF gel (CAF-M), respectively. Furthermore, CAF-NLC3 exhibited a superior anti-cellulite activity in comparison with CAF-P and CAF-M through elevating extracellular matrix components (collagen 1, elastin and hyaluronic acid) and stimulating the brown adipose tissue thermogenesis via up-regulating UCP1 and PPAR-γ expression. In addition, CAF-NLC3 prominently increased lipolysis through HSL activity and decreased pro-inflammatory cytokines such as ICAM-1 and VCAM-1 after 30 days of treatment on a high fat diet-induced cellulite rat model. These findings were further confirmed by histopathological examination supported by morphometric analysis. Therefore, incorporation of CAF in a semisolid NLC formulation would be a promising cosmetic approach for the topical treatment of cellulite.


Asunto(s)
Portadores de Fármacos , Nanoestructuras , Ratas , Animales , Portadores de Fármacos/química , Cafeína , Ratas Wistar , Nanoestructuras/química , Lípidos/química , Tamaño de la Partícula
7.
N Am Spine Soc J ; 14: 100222, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37249948

RESUMEN

Background: Despite the extensive literature on postoperative spinal wound infection, yet to our knowledge, there is no previous study containing combined data from several sites in the Middle East and North Africa (MENA) region. This study aimed to estimate the incidence of surgical site infection (SSI) following spine surgeries, its associated factors, and management. Methods: In a retrospective cohort study, medical records of all patients ≥18 years of age who underwent spine surgery at 6 tertiary referral centers in the MENA region between January 2014 to December 2019 (n=5,872) were examined to collect data on the following: (1) Patient's characteristics, (2) Disease characteristics, (3) Spine surgery approach, and (4) Characteristics of Postoperative SSI. The determinants of postoperative SSI were identified using logistic regression analysis. Receiver operating characteristic (ROC) curve was applied to identify the cut-off of the length of stay in the hospital postoperatively till the infection is likely to occur. Significance was set at p<.05. Results: The overall incidence of SSI was 4.2% (95% CI: 3.72-4.77), in the form of deep (46.4%), superficial (43.1%), dehiscence (9.3%), and organ space (1.2%) infections. After adjusting for all possible confounders, significant predictors of postoperative SSI were; diabetes (OR=2.12, p<.001), smoking (OR=1.66, p=.002), revision surgery (OR=2.20, p<.001), open surgery (OR=2.73, p<.001), perioperative blood transfusion (OR=1.45, p=.033), ASA class III(OR=2.08, p=.002), and ≥4 days length of stay "LOS" (OR= 1.71, p=.001). A cut-off of 4 days was the optimum LOS above which postoperative SSI is more likely to occur, with 0.70 sensitivity, 0.47 specificity, and 0.61 area under the curve. Conclusions: This is the first study that highlighted the incidence of postoperative SSI in spine surgery in the MENA region. Incidence figures are comparable to figures in different areas of the world. Identifying predictors of SSI might help high­risk patients benefit from more intensive wound management.

8.
Biomed Pharmacother ; 164: 114765, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37246132

RESUMEN

Genus Quercus is a well-known source for its polyphenolic content and important biological activity. Plants belonging to the Quercus genus were traditionally used in asthma, inflammatory diseases, wound healing, acute diarrhea, and hemorrhoid. Our work intended to study the polyphenolic profile of the Q. coccinea (QC) leaves and to assess the protective activity of its 80% aqueous methanol extract (AME) against lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Together, the potential molecular mechanism was investigated. Nineteen polyphenolic compounds (1-18), including tannins, flavone, and flavonol glycosides. Phenolic acids and aglycones were purified and identified from the AME of QC leaves. Treatment with AME of QC showed an anti-inflammatory effect evidenced by a remarkable decline in the count of white blood cells and neutrophils which was in harmony with decreasing the levels of high mobility group box-1, nuclear factor kappa B, tumor necrosis factor-α, and interleukin 1 beta. In addition, the antioxidant activity of QC was documented through the significant reduction in malondialdehyde level and elevation of reduced glutathione level and superoxide dismutase activity. Furthermore, the mechanism involved in the pulmonary protective effect of QC involved the downregulation of the TLR4/MyD88 pathway. The AME of QC showed a protective effect against LPS-induced ALI through the powerful anti-inflammatory and antioxidant activities which are linked to its abundancy with polyphenols.


Asunto(s)
Lesión Pulmonar Aguda , Quercus , Ratones , Animales , Lipopolisacáridos/farmacología , Polifenoles/efectos adversos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , FN-kappa B/metabolismo , Antioxidantes/metabolismo , Antiinflamatorios/efectos adversos , Hojas de la Planta
9.
Int Ophthalmol ; 43(9): 3087-3096, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37083872

RESUMEN

PURPOSE: Laser corneal reshaping is a common eye surgery utilized to overcome many vision disorders. Different UV laser wavelengths can be effective in the treatment. However, the ArF excimer laser (193 nm) is the most commonly used due to its high absorption in the cornea. In the current study, we investigate the efficacy of applying a solid-state laser (Nd:YAG fourth harmonic at 266 nm) for the corneal reshaping procedure. METHODS: The utilized laser is generated using an optical setup based on a BBO nonlinear crystal which converts the Q-switched laser (532 nm) to its fourth harmonic (266 nm). Different pulse energies were applied with the same number of the shoots on ex vivo rabbit corneas, and the histological effect is studied. Moreover, the possible thermal damage on the treated corneal tissues was inspected via electron microscope. Additionally, the DNA damage on the corneal cells due to the application of the proposed laser was examined and compared with the existing technology (ArF Excimer laser at 193 nm) using the comet assay. RESULTS: The histological examination revealed an appropriate ablation result with the minimum thermal effect at 1.5 mJ and 2.0 mJ. The overall results show that applying 50-shoots of the 1.5-mJ pulse energy using the proposed 266-nm solid-state laser produces the optimum ablation effect with the minimum thermal damage, and almost the same DNA damage occurred using the commercial 193-nm ArF excimer laser. CONCLUSION: Solid-state laser at 266 nm could be a good alternative to the common 193-nm excimer laser for corneal reshaping procedures.


Asunto(s)
Terapia por Láser , Láseres de Estado Sólido , Animales , Conejos , Proyectos Piloto , Córnea/cirugía , Córnea/patología , Láseres de Excímeros/uso terapéutico , Luz , Láseres de Estado Sólido/uso terapéutico
10.
J Funct Biomater ; 14(3)2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36976042

RESUMEN

A novel series of biodegradable polylactide-based triblock polyurethane (TBPU) copolymers covering a wide range of molecular weights and compositions were synthesized for potential use in biomedical applications. This new class of copolymers showed tailored mechanical properties, improved degradation rates, and enhanced cell attachment potential compared to polylactide homopolymer. Triblock copolymers, (TB) PL-PEG-PL, of different compositions were first synthesized from lactide and polyethylene glycol (PEG) via ring-opening polymerization in the presence of tin octoate as the catalyst. After which, polycaprolactone diol (PCL-diol) reacted with TB copolymers using 1,4-butane diisocyanate (BDI) as a nontoxic chain extender to form the final TBPUs. The final composition, molecular weight, thermal properties, hydrophilicity, and biodegradation rates of the obtained TB copolymers, and the corresponding TBPUs were characterized using 1H-NMR, GPC, FTIR, DSC, and SEM, and contact angle measurements. Results obtained from the lower molecular weight series of TBPUs demonstrated potential use in drug delivery and imaging contrast agents due to their high hydrophilicity and degradation rates. On the other hand, the higher molecular weight series of TBPUs exhibited improved hydrophilicity and degradation rates compared to PL-homopolymer. Moreover, they displayed improved tailored mechanical properties suitable for utilization as bone cement, or in regeneration medicinal applications of cartilage, trabecular, and cancellous bone implants. Furthermore, the polymer nanocomposites obtained by reinforcing the TBPU3 matrix with 7% (w/w) bacterial cellulose nanowhiskers (BCNW) displayed a ~16% increase in tensile strength, and 330% in % elongation compared with PL-homo polymer.

11.
Int J Pharm X ; 5: 100170, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36844895

RESUMEN

Caffeine (CAF) is a challenging natural bioactive compound with proven antiaging efficacy. However, being hydrophilic hampers its permeation through the skin. Our aim is to develop a novel CAF-loaded nano-cosmeceutical tool counteracting skin photoaging via improving CAF skin permeation using a bioactive nanocarrier. Caffeinated hyalurosomes are novel biocompatible antiaging nanoplatforms designed by immobilization of phospholipid vesicles with a hyaluronan polymer. Physicochemical properties of the selected hyalurosomes formulation showed nano-sized vesicles (210.10 ± 1.87 nm), with high zeta potential (-31.30 ± 1.19 mv), and high encapsulation efficiency (84.60 ± 1.05%). In vitro release results showed outstanding sustained release profile from caffeinated hyalurosomes compared to the CAF-loaded in conventional gel over 24 h. The in-vivo study revealed a photoprotective effect of caffeinated hyalurosomes, reflected from the intact and wrinkling-free skin. Results of biochemical analyses of oxidative stress, pro-inflammatory mediators, and anti-wrinkling markers further confirmed the efficacy of the prepared hyalurosomes compared to the CAF conventional gel. Finally, histopathological examination demonstrated normal histological structures of epidermal layers with minimal inflammatory cell infiltrates in the caffeinated hyalurosomes group compared to the positive control group. Conclusively, caffeinated hyalurosomes successfully achieved enhanced CAF loading and penetration into the skin besides the hydration effect of hyaluronan. Consequently, the developed delivery system presents a promising skin protection nano-platforms via the double effects of both hyaluronan and CAF, hence it guards against skin photodamage.

12.
Bull Natl Res Cent ; 46(1): 267, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36415483

RESUMEN

Background: Several reports of unheeded complications secondary to the current mass international rollout of SARS-COV-2 vaccines, one of which is myocarditis occurring with the FDA fully approved vaccine, Pfizer, and others. Main body of the abstract: Certain miRNAs (non-coding RNA sequences) are involved in the pathogenesis in viral myocarditis, and those miRNAs are interestingly upregulated in severe COVID-19. We hypothesize that the use of mRNA-based vaccines may be triggering the release of host miRNAs or that trigger the occurrence of myocarditis. This is based on the finding of altered host miRNA expression promoting virus-induced myocarditis. Short conclusion: In conclusion, miRNAs are likely implicated in myocarditis associated with mRNA vaccines. Our hypothesis suggests the use of miRNA as a biomarker for the diagnosis of mRNA vaccine-induced myocarditis. Additionally, the interplay between viral miRNA and the host immune system could alter inflammatory profiles, hence suggesting the use of therapeutic inhibition to prevent such complications.

13.
Pharmaceuticals (Basel) ; 15(10)2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36297313

RESUMEN

The vast socio-economic impact of Alzheimer's disease (AD) has prompted the search for new neuroprotective agents with good tolerability and safety profile. With its outstanding role as antioxidant and anti-inflammatory, alongside its anti-acetylcholinesterase activity, the artichoke can be implemented in a multi-targeted approach in AD therapy. Moreover, artichoke agricultural wastes can represent according to the current United Nations Sustainable Development goals an opportunity to produce medicinally valuable phenolic-rich extracts. In this context, the UPLC-ESI-MS/MS phytochemical characterization of artichoke bracts extract revealed the presence of mono- and di-caffeoylquinic acids and apigenin, luteolin, and kaempferol O-glycosides with remarkable total phenolics and flavonoids contents. A broad antioxidant spectrum was established in vitro. Artichoke-loaded, chitosan-coated, solid lipid nanoparticles (SLNs) were prepared and characterized for their size, zeta potential, morphology, entrapment efficiency, release, and ex vivo permeation and showed suitable colloidal characteristics, a controlled release profile, and promising ex vivo permeation, indicating possibly better physicochemical and biopharmaceutical parameters than free artichoke extract. The anti-Alzheimer potential of the extract and prepared SLNs was assessed in vivo in streptozotocin-induced sporadic Alzheimer mice. A great improvement in cognitive functions and spatial memory recovery, in addition to a marked reduction of the inflammatory biomarker TNF-α, ß-amyloid, and tau protein levels, were observed. Significant neuroprotective efficacy in dentate Gyrus sub-regions was achieved in mice treated with free artichoke extract and to a significantly higher extent with artichoke-loaded SLNs. The results clarify the strong potential of artichoke bracts extract as a botanical anti-AD drug and will contribute to altering the future medicinal outlook of artichoke bracts previously regarded as agro-industrial waste.

14.
Pharmaceutics ; 14(10)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36297441

RESUMEN

Systemic treatments for rheumatoid arthritis are associated with many side effects. This study aimed to minimize the side effects associated with the systemic administration of leflunomide (LEF) by formulating LEF-loaded emulsomes (EMLs) for intra-articular administration. Additionally, EMLs were loaded with supramagnetic nanoparticles (SPIONs) to enhance joint localization, where a magnet was placed on the joint area after intra-articular administration. Full in vitro characterization, including colloidal characteristics, entrapment efficiency, and in vitro release were conducted besides the in vivo evaluation in rats with adjuvant-induced arthritis. In vivo study included joint diameter measurement, X-ray radiographic analysis, RT-PCR analysis, Western blotting, ELISA for inflammatory markers, and histopathological examination of dissected joints. The particle size and entrapment efficiency of the selected LEF SPION EMLs were 198.2 nm and 83.7%, respectively. The EMLs exhibited sustained release for 24 h. Moreover, in vivo evaluation revealed LEF SPION EMLs to be superior to the LEF suspension, likely due to the increase in LEF solubility by nanoencapsulation that improved the pharmacological effects and the use of SPION that ensured the localization of EMLs in the intra-articular cavity upon administration.

15.
Psychopharmacology (Berl) ; 239(12): 3903-3917, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36287214

RESUMEN

RATIONALE: Alteration of the NAD+ metabolic pathway is proposed to be implicated in lipopolysaccharide (LPS)-induced neurotoxicity and mitochondrial dysfunction in neurodegenerative diseases. Apigenin, a naturally-occurring flavonoid, has been reported to maintain NAD+ levels and to preserve various metabolic functions. OBJECTIVES: This study aimed to explore the effect of apigenin on mitochondrial SIRT3 activity as a mediator through which it could modulate mitochondrial quality control and to protect against intracerebrovascular ICV/LPS-induced neurotoxicity. METHODS: Mice received apigenin (40 mg/kg; p.o) for 7 consecutive days. One hour after the last dose, LPS (12 µg/kg, icv) was administered. RESULTS: Apigenin robustly guarded against neuronal degenerative changes and maintained a normal count of intact neurons in mice hippocampi. Consequently, it inhibited the deleterious effect of LPS on cognitive functions. Apigenin was effective in preserving the NAD+/NADH ratio to boost mitochondrial sirtuin-3 (SIRT3), activity, and ATP production. It conserved normal mitochondrial features via induction of the master regulator of mitochondrial biogenesis, peroxisome proliferator-activated receptor γ (PPARγ) coactivator-1α (PGC-1α), along with mitochondrial transcription factor A (TFAM) and the fusion proteins, mitofusin 2 (MFN2), and optic atrophy-1 (OPA1). Furthermore, it increased phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and parkin expression as well as the microtubule-associated protein 1 light chain 3 II/I ratio (LC3II/I) to induce degradation of unhealthy mitochondria via mitophagy. CONCLUSIONS: These observations reveal the marked neuroprotective potential of apigenin against LPS-induced neurotoxicity through inhibition of NAD+ depletion and activation of SIRT3 to maintain adequate mitochondrial homeostasis and function.


Asunto(s)
Disfunción Cognitiva , Síndromes de Neurotoxicidad , Sirtuina 3 , Animales , Ratones , Apigenina/farmacología , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Lipopolisacáridos/toxicidad , Dinámicas Mitocondriales , Mitofagia , NAD/metabolismo , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/prevención & control , Proteínas Quinasas/metabolismo , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/farmacología
16.
Eur J Pharmacol ; 933: 175258, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36096157

RESUMEN

The purpose of the present study was to investigate the effects of ERK1/2 inhibition on both the amygdala and hippocampal structures, and to investigate its role in regulating memory for sexual information. This study utilized a cerebral ischemia reperfusion (IR) model to produce a stressful brain condition that highlights the possible involvement of a hippocampal GC/pERK1/2/BDNF pathway in the resulting sexual consequences of this ailment. Male Wistar rats were divided into four groups: (1) sham; (2) IR: subjected to 45 min of ischemia followed by 48 h of reperfusion; (3) PD98059: received PD98059 at 0.3 mg/kg, i.p.; (4) IR + PD98059. This study provides new evidence for cerebral IR-induced amygdala injury and the sexual impairments that are associated with motor and cognitive deficits in rats. These findings were correlated with histopathological changes that are defined by extensive neuronal loss in both the hippocampus and the amygdala. The current study postulated that the ERK inhibitor PD98059 could reverse IR-induced injury in the amygdala as well as reversing IR-induced sexual impairments. This hypothesis is supported by the ability of PD98059 to: (1) restore luteinizing hormone and testosterone levels; (2) increase sexual arousal and copulatory performance (as evidenced by modulating mount, intromission, ejaculation latencies, and post-ejaculatory intervals); (3) improve the histological profile in the amygdala that is associated with reduced glutamate levels, c-Fos expression, and elevated gamma aminobutyric acid levels. In conclusion, the present findings introduce pERK1/2 inhibition as a possible strategy for enhancing sexual activity in survivors of IR.


Asunto(s)
Isquemia Encefálica , Daño por Reperfusión , Animales , Isquemia Encefálica/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Infarto Cerebral , Ácido Glutámico , Hormona Luteinizante , Sistema de Señalización de MAP Quinasas , Masculino , Ratas , Ratas Wistar , Reperfusión , Daño por Reperfusión/metabolismo , Testosterona , Ácido gamma-Aminobutírico
17.
Int Immunopharmacol ; 112: 109191, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36055034

RESUMEN

Balancing microglia M1/M2 polarization has been shown as a prospective therapeutic strategy for Parkinson's disease (PD). Various vital signaling pathways are likely to govern the microglial phenotype. The implication of 5HT1A receptors in neurodegenerative disorders has raised interest in exploring the repositioning of flibanserin (Flib), a 5HT1A agonist, as an effective neuroprotective agent for PD. Therefore, this study was designed to assess the ability of Flib to modulate microglia phenotype switching from M1 to M2 via PI3K/AKT downstream targets in a rotenone model of PD. Rats received rotenone (1.5 mg/kg) every other day and were concurrently treated with Flib (40 mg/kg/day) with or without wortmannin (15 µg/kg/day), a PI3K inhibitor, for 21 days. Flib improved the motor perturbations induced by rotenone, as confirmed by the reversion of histopathological damage and tyrosine hydroxylase immunohistochemical alterations in both the striata and substantia nigra. The molecular signaling of Flib was elaborated by inducing striatal AKT phosphorylation and the expression of its substantial target, KLF4. Flib induced STAT6 phosphorylation to promote M2 polarization as demonstrated by the increased CD163++ microglial count with striatal arginase activity. In parallel, it markedly inhibited M1 activation as evidenced by the reduction in CD86++ microglia count with striatal proinflammatory mediators, IL-1ß and iNOS. The pre-administration of wortmannin mostly negated Flib's neuroprotective effects. In conclusion, Flib AKT/ KLF4-dependently amended M1/M2 microglial imbalance to exert a promising neuroprotective effect, highlighting its potential as a revolutionary candidate for conquering PD.


Asunto(s)
Fármacos Neuroprotectores , Enfermedad de Parkinson , Ratas , Animales , Microglía , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Rotenona , Tirosina 3-Monooxigenasa/metabolismo , Tirosina 3-Monooxigenasa/farmacología , Wortmanina/farmacología , Arginasa/metabolismo , Reposicionamiento de Medicamentos
18.
Front Pharmacol ; 13: 940988, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35959438

RESUMEN

Deverra tortuosa (Desf.) DC. and Deverra. triradiata Hochst. ex Bioss are perennial desert shrubs widely used traditionally for many purposes and they are characteristic for their essential oil. The objective of the present study was to investigate the in vivo wound healing activity of the essential oil (EO) of D. tortuosa and D. triradiata through their encapsulation into nanoemulsion. EO nanoemulsion was prepared using an aqueous phase titration method, and nanoemulsion zones were identified through the construction of phase diagrams. The EO was prepared by hydrodistillation (HD), microwave-assisted hydrodistillation (MAHD), and supercritical fluid extraction (SFE) and analyzed using GC/MS. D. tortuosa oil is rich in the non-oxygenated compound, representing 74.54, 73.02, and 41.19% in HD, MADH, and SFE, respectively, and sabinene represents the major monoterpene hydrocarbons. Moreover, D. triradiata is rich in oxygenated compounds being 69.77, 52.87, and 61.69% in HD, MADH, and SFE, respectively, with elemicin and myristicin as major phenylpropanoids. Topical application of the nanoemulsion of D. tortuosa and D. triradiata (1% or 2%) exhibited nearly 100% wound contraction and complete healing at day 16. Moreover, they exhibit significant antioxidant and anti-inflammatory effects and a significant increase in growth factors and hydroxyproline levels. Histopathological examination exhibited complete re-epithelialization accompanied by activated hair follicles and abundant collagen fibers, especially at a concentration of 2%. Therefore, the incorporation of the two Deverra species into nanoemulsion could professionally endorse different stages of wound healing.

19.
Cureus ; 14(5): e24743, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35686257

RESUMEN

Bariatric surgery is increasingly performed over the past decade for the treatment of morbid obesity. It has beneficial effects on weight reduction, along with diabetes remission. Conflicting results have been reported to evaluate the effect of ethics differences on the outcomes of bariatric surgery. We conducted this meta-analysis to outline the effects of ethnic differences on the outcomes of bariatric surgery, including weight reduction, biochemical variables, diabetes, and hypertension remission. A comprehensive literature search was conducted, using PubMed, Web of Science (ISI), Google Scholar, Popline, Global Health Library (GHL), Virtual Health Library (VHL) including Cochrane database, New York Academy of Medicine (NYAM), and System for Information on Grey Literature in Europe (SIGLE) for studies reporting body mass index (BMI), percentage of excess weight loss (%EWL), waist circumference, hypertension, lipid profile, and diabetes variables. We used the National Heart, Lung, and Blood Institute (NHLBI) tool (Bethesda, MD: NHLBI, National Institutes of Health {NIH}) for quality assessment. Comprehensive Meta-Analysis version 2 software (Englewood, NJ: Biostat, Inc.) was applied to perform the meta-analysis of the variables of interest. We included 23 studies of 71,679 subjects, who underwent bariatric surgery. The majority of the included cases were Whites 55,030 (77%), while 705 (1%) were Asians. The percentages of Blacks, African Americans, Hispanics, and Non-Hispanics were 9.3%, 1.3%, 10.4%, and 1%, respectively. BMI showed no significant difference between Whites vs African American and Hispanic vs Non-Hispanic groups (MD: 0.858; 95% CI: 3.408-1.691; p = 0.509 and MD: 0.455; 95% CI: 2.444-1.554; p = 0.663, respectively). The same result was reported for %EWL, comparing Whites vs African Americans. Lipid biochemical variables, diabetes remission, and hypertension control were significantly more seen among the Asian population. In conclusion, we reported a significant ethnic diversity and reduction in waist circumference, hyperlipidemia, and the associated morbidity one year after bariatric surgery in the Asian population. Further, high-quality prospective studies should focus on the social and psychological ethnic differences associated with obesity.

20.
Int J Radiat Oncol Biol Phys ; 113(5): 960-966, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35595157

RESUMEN

PURPOSE: Effective treatment options for refractory depression are needed. Recent advancements permit both precise ablative radiation and functional neurologic connectome analysis using standard magnetic resonance imaging. We combined these innovations to perform stereotactic radiosurgical capsulotomy for the treatment of medically refractory major depressive disorder and study connectome response using a novel tractography-based approach. METHODS AND MATERIALS: Patients with medically refractory depression were enrolled on a prospective pilot single-arm observational trial from 2020 to 2021 at a single academic tertiary referral center. Bilateral ablation of the anterior limb of the internal capsule was accomplished by mask-based linear accelerator stereotactic radiosurgery. Beck's Depression Inventory measured efficacy. Montreal Cognitive Assessment evaluated cognition. RESULTS: Three patients were enrolled. Depression burden was improved by 88% at 12-month follow-up and by 55% at 18-month follow-up for patient 1 and 2, respectively. Patient 1 discontinued ketamine therapy, and patient 2 discontinued electroconvulsive therapy. Patient 3 reported global improvement in symptoms and function at 3 months. All 3 patients had reduction or resolution of suicidal ideation. No patient experienced cognitive decline or neurologic toxicity, and Montreal Cognitive Assessment score, as well as subjective patient-reported evaluations of concentration and attention, were superior after treatment. Tractography confirmed intended disruption of the cortico-striatal-thalamo-cortical loop with structural reorganization in the connectome. Connectome change was consistent between patients. Observed increases in caudate and putamen connectivity and decreases in thalamic connectivity may explain improved concentration, attention, and depression. The diversity and magnitude of connectome change may correlate with degree of clinical response. CONCLUSIONS: In 3 patients with refractory depression, radiosurgical capsulotomy significantly reduced the burden of depression. Functional connectome reorganization offers neurobiological evidence to support further investigations of the role of radiosurgery in depression.


Asunto(s)
Trastorno Depresivo Mayor , Trastorno Depresivo Resistente al Tratamiento , Trastorno Obsesivo Compulsivo , Radiocirugia , Trastorno Depresivo Mayor/diagnóstico por imagen , Trastorno Depresivo Mayor/cirugía , Trastorno Depresivo Resistente al Tratamiento/diagnóstico por imagen , Trastorno Depresivo Resistente al Tratamiento/cirugía , Imagen de Difusión Tensora , Humanos , Imagen por Resonancia Magnética , Trastorno Obsesivo Compulsivo/patología , Trastorno Obsesivo Compulsivo/psicología , Trastorno Obsesivo Compulsivo/cirugía , Estudios Prospectivos , Radiocirugia/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA