RESUMEN
Deposition of misfolded α-synuclein (αsyn) in the enteric nervous system (ENS) is found in multiple neurodegenerative diseases. It is hypothesized that ENS synucleinopathy contributes to both the pathogenesis and non-motor morbidity in Parkinson's Disease (PD), but the cellular and molecular mechanisms that shape enteric histopathology and dysfunction are poorly understood. Here, we demonstrate that ENS-resident macrophages, which play a critical role in maintaining ENS homeostasis, initially respond to enteric neuronal αsyn pathology by upregulating machinery for complement-mediated engulfment. Pharmacologic depletion of ENS-macrophages or genetic deletion of C1q enhanced enteric neuropathology. Conversely, C1q deletion ameliorated gut dysfunction, indicating that complement partially mediates αsyn-induced gut dysfunction. Internalization of αsyn led to increased endo-lysosomal stress that resulted in macrophage exhaustion and temporally correlated with the progression of ENS pathology. These novel findings highlight the importance of enteric neuron-macrophage interactions in removing toxic protein aggregates that putatively shape the earliest stages of PD in the periphery.
RESUMEN
We investigated the lateralization of gut-innervating vagal sensory neurons and their roles in feeding behavior. Using genetic, anatomical, and behavioral analyses, we discovered a subset of highly lateralized vagal sensory neurons with distinct sensory responses to intestinal stimuli. Our results demonstrated that left vagal sensory neurons (LNG) are crucial for distension-induced satiety, while right vagal sensory neurons (RNG) mediate preference for nutritive foods. Furthermore, these lateralized neurons engage different central circuits, with LNG neurons recruiting brain regions associated with energy balance and RNG neurons activating areas related to salience, memory, and reward. Altogether, our findings unveil the diverse roles of asymmetrical gut-vagal-brain circuits in feeding behavior, offering new insights for potential therapeutic interventions targeting vagal nerve stimulation in metabolic and neuropsychiatric diseases.
RESUMEN
Dopaminergic dysfunction has long been connected to the development of HIV infection in the CNS. Our previous data showed that dopamine increases HIV infection in human macrophages by increasing the susceptibility of primary human macrophages to HIV entry through stimulation of both D1-like and D2-like receptors. These data suggest that, in macrophages, both dopamine receptor subtypes may act through a common signaling mechanism. To define better the mechanism(s) underlying this effect, this study examines the specific signaling processes activated by dopamine in primary human monocyte-derived macrophages (hMDM). In addition to confirming that the increase in entry is unique to dopamine, these studies show that dopamine increases HIV entry through a PKA insensitive, Ca2+ dependent pathway. Further examination demonstrated that dopamine can signal through a previously defined, non-canonical pathway in human macrophages. This pathway involves both Ca2+ release and PKC phosphorylation, and these data show that dopamine mediates both of these effects and that both were partially inhibited by the Gq/11 specific inhibitor YM-254890. Studies have shown that Gq/11 preferentially couples to the D1-like receptor D5, indicating an important role of the D1-like receptors in mediating these effects. These data indicate a role for Ca2+ flux in the HIV entry process, and suggest a distinct signaling mechanism mediating some of the effects of dopamine in macrophages. Together, the data indicate that targeting this alternative dopamine signaling pathway might provide new therapeutic options for individuals with elevated CNS dopamine suffering from NeuroHIV.
Asunto(s)
Dopamina/metabolismo , VIH/efectos de los fármacos , Macrófagos/efectos de los fármacos , Adulto , Calcio/metabolismo , Señalización del Calcio , Dopamina/fisiología , Femenino , VIH/metabolismo , Infecciones por VIH/metabolismo , Voluntarios Sanos , Humanos , Macrófagos/metabolismo , Masculino , Péptidos Cíclicos/farmacología , Fosforilación , Cultivo Primario de Células , Proteína Quinasa C/metabolismo , Receptores de Dopamina D1/metabolismo , Transducción de Señal/fisiologíaRESUMEN
Methamphetamine is the second most widely used illicit drug worldwide. More than 290 tons of methamphetamine was synthesized in the year 2005 alone, corresponding to approximately ~3 billion 100 mg doses of methamphetamine. Drug addicts abuse high concentrations of methamphetamine for months and even years. Current reports in the literature are consistent with the interpretation that methamphetamine-induced neuronal injury may render methamphetamine users more susceptible to neurodegenerative pathologies. Specifically, chronic exposure to psychostimulants is associated with increases in striatal alpha-synuclein expression, a synaptic protein implicated in the pathogenesis of neurodegenerative diseases. This raises the question whether methamphetamine exposure affects alpha-synuclein levels in the brain. In this short report, we examined alpha-synuclein protein and mRNA levels in the striatum, hippocampus and cortex of adolescent male mice following a neurotoxic regimen of methamphetamine (24mg/kg/daily/14days). We found that methamphetamine exposure resulted in a decrease in the monomeric form of alpha-synuclein (molecular species <19 kDa), while increasing higher molecular weight alpha-synuclein species (>19 kDa) in the striatum and hippocampus, but not in the cortex. Despite the elevation of high molecular weight alpha-synuclein species (>19 kDa), there was no change in the alpha-synuclein mRNA levels in the striatum, hippocampus and cortex of mice exposed to methamphetamine. The methamphetamine-induced increase in high molecular weight alpha-synuclein protein levels might be one of the causal mechanisms or one of the compensatory consequences of methamphetamine-mediated neurotoxicity.
RESUMEN
The brain noradrenergic system is activated by stress, and modulates the activity of forebrain regions involved in behavioral and neuroendocrine responses to stress, such as the lateral bed nucleus of the stria terminalis (BSTL). This region of the limbic forebrain receives dense noradrenergic innervation, and has been implicated in both anxiety and regulation of the hypothalamic-pituitary-adrenal axis. We hypothesized that stress-induced release of norepinephrine in the BSTL modulates anxiety-like behavioral responses to stress and activation of the hypothalamic-pituitary-adrenal stress axis. Using microdialysis, we showed that release of norepinephrine was increased in the BSTL of male Sprague-Dawley rats during immobilization stress. In the next experiment, we then microinjected noradrenergic antagonists into the BSTL immediately prior to acute immobilization stress to examine noradrenergic modulation of behavioral stress reactivity. Either the alpha(1)-receptor antagonist benoxathian, or a cocktail of beta(1)- and beta(2)-receptor antagonists (betaxolol+ICI 118,551) blocked the anxiety-like reduction in open-arm exploration on the elevated plus-maze, but not the reduction in social behavior induced in the social interaction test. In a third experiment, benoxathian reduced plasma levels of adrenocorticotropic hormone following stress, but beta-receptor antagonists had no effect. From these results we suggest that stress-induced norepinephrine release acts on both alpha(1)- and beta-receptors in the BSTL to facilitate anxiety-like behavioral responses on the plus-maze but not the social interaction test, and modulates hypothalamic-pituitary-adrenal axis activation via alpha(1)-receptors only. Together with previous results in which adrenergic antagonists in central amygdala attenuated behavioral responses on the social interaction test but not the plus-maze, these observations suggest the two behavioral tests measure different dimensions of stress reactivity, and that norepinephrine facilitates different components of the stress response by region- and receptor-specific mechanisms.
Asunto(s)
Conducta Animal/fisiología , Sistemas Neurosecretores/fisiopatología , Norepinefrina/metabolismo , Núcleos Septales/metabolismo , Estrés Fisiológico/fisiopatología , Estrés Fisiológico/psicología , Enfermedad Aguda , Antagonistas Adrenérgicos/farmacología , Hormona Adrenocorticotrópica/metabolismo , Animales , Defecación , Inmovilización , Relaciones Interpersonales , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Microdiálisis , Norepinefrina/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Estrés Fisiológico/etiologíaRESUMEN
Galanin is a 29- or 30-amino acid peptide with wide-ranging effects on hormone release, feeding behavior, smooth muscle contractility, and somatosensory neuronal function. Three distinct galanin receptor (GALR) subtypes, designated GALR1, 2, and 3, have been cloned from the rat. We report here the cloning of the human GALR2 and GALR3 genes, an initial characterization of their pharmacology with respect to radioligand binding and signal transduction pathways, and a profile of their expression in brain and peripheral tissues. Human GALR2 and GALR3 show, respectively, 92 and 89% amino acid sequence identity with their rat homologues. Radioligand binding studies with 125I-galanin show that recombinant human GALR2 binds with high affinity to human galanin (K(D) = 0.3 nM). Human GALR3 binds galanin with less affinity (IC50 of 12 nM for porcine galanin and 75 nM for human galanin). Human GALR2 was shown to couple to phospholipase C and elevation of intracellular calcium levels as assessed by aequorin luminescence in HEK-293 cells and by Xenopus melanophore pigment aggregation and dispersion assays, in contrast to human GALR1 and human GALR3, which signal predominantly through inhibition of adenylate cyclase. GALR2 mRNA shows a wide distribution in the brain (mammillary nuclei, dentate gyrus, cingulate gyrus, and posterior hypothalamic, supraoptic, and arcuate nuclei), and restricted peripheral tissue distribution with highest mRNA levels detected in human small intestine. In comparison, whereas GALR3 mRNA was expressed in many areas of the rat brain, there was abundant expression in the primary olfactory cortex, olfactory tubercle, the islands of Calleja, the hippocampal CA regions of Ammon's horn, and the dentate gyrus. GALR3 mRNA was highly expressed in human testis and was detectable in adrenal gland and pancreas. The genes for human GALR2 and 3 were localized to chromosomes 17q25 and 22q12.2-13.1, respectively.