Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Nanoscale ; 16(21): 10208-10220, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38727407

RESUMEN

Immune activation, whether occurring from direct immune checkpoint blockade or indirectly as a result of chemotherapy, is an approach that has drastically impacted the way we treat cancer. Utilizing patients' own immune systems for anti-tumor efficacy has been translated to robust immunotherapies; however, clinically significant successes have been achieved in only a subset of patient populations. Dendrimers and dendritic polymers have recently emerged as a potential nanocarrier platform that significantly improves the therapeutic efficacy of current and next-generation cancer immunotherapies. In this paper, we highlight the recent progress in developing dendritic polymer-based therapeutics with immune-modulating properties. Specifically, dendrimers, dendrimer hybrids, and dendronized copolymers have demonstrated promising results and are currently in pre-clinical development. Despite their early stage of development, these nanocarriers hold immense potential to make profound impact on cancer immunotherapy and combination therapy. This overview provides insights into the potential impact of dendrimers and dendron-based polymers, offering a preview of their potential utilities for various aspects of cancer treatment.


Asunto(s)
Dendrímeros , Inmunoterapia , Nanopartículas , Neoplasias , Humanos , Dendrímeros/química , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Nanopartículas/uso terapéutico , Animales , Portadores de Fármacos/química , Polímeros/química
2.
Nature ; 628(8007): 293-298, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38570686

RESUMEN

Phase-change memory (PCM) has been considered a promising candidate for solving von Neumann bottlenecks owing to its low latency, non-volatile memory property and high integration density1,2. However, PCMs usually require a large current for the reset process by melting the phase-change material into an amorphous phase, which deteriorates the energy efficiency2-5. Various studies have been conducted to reduce the operation current by minimizing the device dimensions, but this increases the fabrication cost while the reduction of the reset current is limited6,7. Here we show a device for reducing the reset current of a PCM by forming a phase-changeable SiTex nano-filament. Without sacrificing the fabrication cost, the developed nano-filament PCM achieves an ultra-low reset current (approximately 10 µA), which is about one to two orders of magnitude smaller than that of highly scaled conventional PCMs. The device maintains favourable memory characteristics such as a large on/off ratio, fast speed, small variations and multilevel memory properties. Our finding is an important step towards developing novel computing paradigms for neuromorphic computing systems, edge processors, in-memory computing systems and even for conventional memory applications.

3.
Virus Evol ; 10(1): veae014, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38455682

RESUMEN

Clade 2.3.4.4b highly pathogenic avian influenza A (HPAI) viruses have been detected in wild birds worldwide, causing recurrent outbreaks since 2016. During the winter of 2021-2022, we detected one H5N8 and forty-three H5N1 clade 2.3.4.4b HPAI viruses from wild birds in South Korea. Phylogenetic analysis revealed that HA gene of H5N1 viruses was divided into two genetically distinct groups (N1.G1 and N1.G2). Bayesian phylodynamic analysis demonstrated that wild birds play a vital role in viral transmission and long-term maintenance. We identified five genotypes (N1.G1.1, N1.G2, N1.G2.1, N1.G2.2, and N1.G2.2.1) having distinct gene segment constellations most probably produced by reassortments with low-pathogenic avian influenza viruses. Our results suggest that clade 2.3.4.4b persists in wild birds for a long time, causing continuous outbreaks, compared with previous clades of H5 HPAI viruses. Our study emphasizes the need for enhancing control measures in response to the changing viral epidemiology.

4.
Infect Genet Evol ; 118: 105565, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38309607

RESUMEN

Infectious bronchitis virus (IBV), an avian coronavirus, has caused considerable damage to the poultry industry. In Korea, indigenous KM91-like and newly introduced QX-like lineages belonging to the GI-19 lineage have been prevalent despite constant vaccination. In this study, complete genome sequences of 23 IBV isolates in Korea from 2010 to 2020 were obtained using next-generation sequencing, and their phylogenetic relationship and recombination events were analyzed. Phylogenetic analysis based on the S1 gene showed that all isolates belonged to the GI-19 lineage and were divided into five subgroups (KM91-like, K40/09-like, and QX-like II to IV). Among the 23 isolates, 14 recombinants were found, including frequent recombination between KM91-like and QX-like strains. In addition, it was observed that other lineages, such as GI-1, GI-13, and GI-16, were involved in recombination. Most recombination breakpoints were detected in the ORF1ab gene, particularly nsp3. However, when considering the size of each genome, recombination occurred more frequently in the 3a, E and 5a genes. Taken together, genetic recombination frequently occurred throughout the entire genome between various IBV strains in Korea, including live attenuated vaccine strain. Our study suggests the necessity of further research on the contribution of recombination of genomes outside the spike region to the biological characteristics of IBV.


Asunto(s)
Gammacoronavirus , Virus de la Bronquitis Infecciosa , Filogenia , República de Corea/epidemiología , Virus de la Bronquitis Infecciosa/genética , Vacunas Atenuadas , Recombinación Genética
5.
Virology ; 590: 109945, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38064871

RESUMEN

The ongoing COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has led to the emergency of various lineages through mutations and recombination. In the Delta lineage, we identified recombination events in the ORF1a gene, which divided the Delta sublineages into three different genotypes (Delta R1-R3). The regional distributions of Delta R1 and Delta R2 were not correlated, indicating that recombination occurred early in the Delta outbreak. The impact of the ORF1a gene on SARS-CoV-2 transmission remains unclear; however, our findings suggest that recombination may have contributed to the evolution and global spread of the Delta lineage.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Pandemias , Brotes de Enfermedades
6.
bioRxiv ; 2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37905014

RESUMEN

Transposon-derived transcripts are abundant in RNA sequences, yet their landscape and function, especially for fusion transcripts derived from unannotated or somatically acquired transposons, remains underexplored. Here, we developed a new bioinformatic tool to detect transposon-fusion transcripts in RNA-sequencing data and performed a pan-cancer analysis of 10,257 cancer samples across 34 cancer types as well as 3,088 normal tissue samples. We identified 52,277 cancer-specific fusions with ~30 events per cancer and hotspot loci within transposons vulnerable to fusion formation. Exonization of intronic transposons was the most prevalent genic fusions, while somatic L1 insertions constituted a small fraction of cancer-specific fusions. Source L1s and HERVs, but not Alus showed decreased DNA methylation in cancer upon fusion formation. Overall cancer-specific L1 fusions were enriched in tumor suppressors while Alu fusions were enriched in oncogenes, including recurrent Alu fusions in EZH2 predictive of patient survival. We also demonstrated that transposon-derived peptides triggered CD8+ T-cell activation to the extent comparable to EBV viruses. Our findings reveal distinct epigenetic and tumorigenic mechanisms underlying transposon fusions across different families and highlight transposons as novel therapeutic targets and the source of potent neoantigens.

7.
Mol Cancer ; 22(1): 164, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37803338

RESUMEN

To address the shortcomings of current hepatocellular carcinoma (HCC) surveillance tests, we set out to find HCC-specific methylation markers and develop a highly sensitive polymerase chain reaction (PCR)-based method to detect them in circulating cell-free DNA (cfDNA). The analysis of large methylome data revealed that Ring Finger Protein 135 (RNF135) and Lactate Dehydrogenase B (LDHB) are universally applicable HCC methylation markers with no discernible methylation level detected in any other tissue types. These markers were used to develop Methylation Sensitive High-Resolution Analysis (MS-HRM), and their diagnostic accuracy was tested using cfDNA from healthy, at-risk, and HCC patients. The combined MS-HRM RNF135 and LDHB analysis detected 57% of HCC, outperforming the alpha-fetoprotein (AFP) test's sensitivity of 45% at comparable specificity. Furthermore, when used with the AFP test, the methylation assay can detect 70% of HCC. Our findings suggest that the cfDNA methylation assay could be used for HCC liquid biopsy.


Asunto(s)
Carcinoma Hepatocelular , Ácidos Nucleicos Libres de Células , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/análisis , alfa-Fetoproteínas/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metilación de ADN , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Ácidos Nucleicos Libres de Células/genética , Ubiquitina-Proteína Ligasas/metabolismo
8.
Front Vet Sci ; 10: 1157984, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37377949

RESUMEN

Avian influenza viruses (AIVs) in wild birds are phylogenetically separated in Eurasian and North American lineages due to the separated distribution and migration of wild birds. However, AIVs are occasionally dispersed between two continents by migratory wild birds flying across the Bering Strait. In this study, we isolated three AIVs from wild bird feces collected in South Korea that contain gene segments derived from American lineage AIVs, including an H6N2 isolated in 2015 and two H6N1 in 2017. Phylogenetic analysis suggests that the H6N2 virus had American lineage matrix gene and the H6N1 viruses had American lineage nucleoprotein and non-structural genes. These results highlight that novel AIVs have continuously emerged by reassortment between viruses from the two continents. Therefore, continuous monitoring for the emergence and intercontinental spread of novel reassortant AIV is required to prepare for a possible future outbreak.

9.
Emerg Microbes Infect ; 12(2): 2228934, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37345516

RESUMEN

Following the global emergence of the SARS-CoV-2 Alpha variant of concern (VOC) in 2020, the Delta variant triggered another wave in 2021. The AY.69 lineage, a Delta VOC, was particularly prevalent in Republic of Korea (South Korea) from May 2021 to January 2022, despite the synchronized implementation of vaccination programmes and non-pharmaceutical interventions (NPIs) such as social distancing. In this study, we used phylogeographic analysis combined with a generalized linear model (GLM) to examine the impact of human movement and vaccination on viral transmission. Our findings indicated that transmission primarily originated in South Korea's metropolitan areas, and a positive correlation was observed between total human mobility (tracked by GPS on mobile phones and estimated through credit card consumption) and viral spread. The phylodynamic analysis further revealed that non-vaccinated individuals were the primary transmitters of the virus during the study period, even though vaccination programmes had commenced three months prior to the AY.69 outbreak. Our study emphasizes the need to focus on controlling SARS-CoV-2 transmission in metropolitan regions and among unvaccinated populations. Furthermore, the positive correlation between mobility data and viral dissemination could contribute to the development of more accurate predictive models for local spread of pandemics.


Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , SARS-CoV-2/genética , República de Corea/epidemiología , Vacunación
10.
Cancer Lett ; 562: 216187, 2023 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-37068555

RESUMEN

Head and neck squamous cell carcinoma (HNSCC) is a common and deadly cancer. Circulating tumor cell (CTC) abundance may a valuable, prognostic biomarker in low- and intermediate-risk patients. However, few technologies have demonstrated success in detecting CTCs in these populations. We prospectively collected longitudinal CTC counts from two cohorts of patients receiving treatments at our institution using a highly sensitive device that purifies CTCs using biomimetic cell rolling and dendrimer-conjugated antibodies. In patients with intermediate risk human papillomavirus (HPV)-positive HNSCC, elevated CTC counts were detected in 13 of 14 subjects at screening with a median of 17 CTC/ml (range 0.2-2986.5). A second cohort of non-metastatic, HPV- HNSCC subjects received cetuximab monotherapy followed by surgical resection. In this cohort, all subjects had elevated baseline CTC counts median of 73 CTC/ml (range 5.4-332.9) with statistically significant declines during treatment. Interestingly, two patients with recurrent disease had elevated CTC counts during and following treatment, which also correlated with growth of size and ki67 expression in the primary tumor. The results suggest that our device may be a valuable tool for evaluating the success of less intensive treatment regimens.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de Cabeza y Cuello , Células Neoplásicas Circulantes , Infecciones por Papillomavirus , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Cetuximab/uso terapéutico , Células Neoplásicas Circulantes/patología , Neoplasias de Cabeza y Cuello/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Biomarcadores de Tumor/metabolismo , Pronóstico
11.
Sci Rep ; 12(1): 22414, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36575217

RESUMEN

The outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a global pandemic since 2019. Variants of concern (VOCs) declared by the World Health Organization require continuous monitoring because of their possible changes in transmissibility, virulence, and antigenicity. The Omicron variant, a VOC, has become the dominant variant worldwide since November 2021. In the Republic of Korea (South Korea), the number of confirmed cases increased rapidly after the detection of Omicron VOC on November 24, 2021. In this study, we estimated the underlying epidemiological processes of Omicron VOC in South Korea using time-scaled phylodynamic analysis. Three distinct phylogenetic subgroups (Kor-O1, Kor-O2, and Kor-O3) were detected in South Korea. The Kor-O1 subgroup circulated in the Daegu region, whereas Kor-O2 and Kor-O3 circulated in Incheon and Jeollanam-do, respectively. The viral population size and case number of the Kor-O1 subgroup increased more rapidly than those of the other subgroups, indicating the rapid spread of the virus. The results indicated the multiple introductions of Omicron sub-lineages into South Korea and their subsequent co-circulation. The evolution and transmission of SARS-CoV-2 should be continuously monitored, and control strategies need to be improved to control the multiple variants.


Asunto(s)
COVID-19 , Humanos , Filogenia , COVID-19/epidemiología , SARS-CoV-2/genética , Genómica , República de Corea/epidemiología
12.
BMB Rep ; 55(11): 553-558, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36016503

RESUMEN

Hepatocellular carcinoma (HCC) is dangerous cancer that often evades early detection because it is asymptomatic and an effective detection method is lacking. For people with chronic liver inflammation who are at high risk of developing HCC, a sensitive detection method for HCC is needed. In a meta-analysis of The Cancer Genome Atlas pan-cancer methylation database, we identified a CpG island in the USP44 promoter that is methylated specifically in HCC. We developed methylation-sensitive high-resolution melting (MS-HRM) analysis to measure the methylation levels of the USP promoter in cell-free DNA isolated from patients. Our MS-HRM assay correctly identified 40% of patients with early-stage HCC, whereas the α-fetoprotein test, which is currently used to detect HCC, correctly identified only 25% of early-stage HCC patients. These results demonstrate that USP44 MS-HRM analysis is suitable for HCC surveillance. [BMB Reports 2022; 55(11): 553-558].


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Metilación de ADN/genética , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Regiones Promotoras Genéticas/genética , Islas de CpG/genética , Biomarcadores de Tumor/genética , Ubiquitina Tiolesterasa/genética
13.
Biosens Bioelectron ; 213: 114445, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35679646

RESUMEN

Despite its high potential, PD-L1 expressed by tumors has not been successfully utilized as a biomarker for estimating treatment responses to immunotherapy. Circulating tumor cells (CTCs) and tumor-derived exosomes that express PD-L1 can potentially be used as biomarkers; however, currently available assays lack clinically significant sensitivity and specificity. Here, a novel peptide-based capture surface is developed to effectively isolate PD-L1-expressing CTCs and exosomes from human blood. For the effective targeting of PD-L1, this study integrates peptide engineering strategies to enhance the binding strength and specificity of a ß-hairpin peptide derived from PD-1 (pPD-1). Specifically, this study examines the effect of poly(ethylene glycol) spacers, the secondary peptide structure, and modification of peptide sequences (e.g., removal of biologically redundant amino acid residues) on capture efficiency. The optimized pPD-1 configuration captures PD-L1-expressing tumor cells and tumor-derived exosomes with 1.5-fold (p = 0.016) and 1.2-fold (p = 0.037) higher efficiencies, respectively, than their whole antibody counterpart (aPD-L1). This enhanced efficiency is translated into more clinically significant detection of CTCs (1.9-fold increase; p = 0.035) and exosomes (1.5-fold increase; p = 0.047) from patients' baseline samples, demonstrating stronger correlation with patients' treatment responses. Additionally, we confirmed that the clinical accuracy of our system can be further improved by co-analyzing the two biomarkers (bimodal CTC/exosome analysis). These data demonstrate that pPD-1-based capture is a promising approach for capturing PD-L1-expressing CTCs and exosomes, which can be used as a reliable biomarker for cancer immunotherapy.


Asunto(s)
Técnicas Biosensibles , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antígeno B7-H1 , Biomarcadores de Tumor , Carcinoma de Pulmón de Células no Pequeñas/patología , Humanos , Inmunoterapia , Biopsia Líquida , Neoplasias Pulmonares/diagnóstico , Péptidos
14.
Cancers (Basel) ; 14(9)2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35565192

RESUMEN

(1) Background: Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death worldwide. Although various serum enzymes have been utilized for the diagnosis and prognosis of HCC, the currently available biomarkers lack the sensitivity needed to detect HCC at early stages and accurately predict treatment responses. (2) Methods: We utilized our highly sensitive cell-free DNA (cfDNA) detection system, in combination with a machine learning algorithm, to provide a platform for improved diagnosis and prognosis of HCC. (3) Results: cfDNA, specifically alpha-fetoprotein (AFP) expression in captured cfDNA, demonstrated the highest accuracy for diagnosing malignancies among the serum/plasma biomarkers used in this study, including AFP, aspartate aminotransferase, alanine aminotransferase, albumin, alkaline phosphatase, and bilirubin. The diagnostic/prognostic capability of cfDNA was further improved by establishing a cfDNA score (cfDHCC), which integrated the total plasma cfDNA levels and cfAFP-DNA expression into a single score using machine learning algorithms. (4) Conclusion: The cfDHCC score demonstrated significantly improved accuracy in determining the pathological features of HCC and predicting patients' survival outcomes compared to the other biomarkers. The results presented herein reveal that our cfDNA capture/analysis platform is a promising approach to effectively utilize cfDNA as a biomarker for the diagnosis and prognosis of HCC.

15.
Artículo en Inglés | MEDLINE | ID: mdl-34984833

RESUMEN

The development of minimally invasive tests for cancer diagnosis and prognosis will aid in the research of new treatments and improve survival rates. Liquid biopsies seek to derive actionable information from tumor material found in routine blood samples. The relative scarcity of tumor material in this complex mixture makes isolating and detecting cancerous material such as proteins, circulating tumor DNA, exosomes, and whole circulating tumor cells a challenge for device engineers. This review describes the chemistry and applications of branched and hyperbranched to improve the performance of liquid biopsy devices. These polymers can improve the performance of a liquid biopsy through several mechanisms. For example, polymers designed to increase the affinity of capture enhance device sensitivity. On the other hand, polymers designed to increase binding avidity or repel nonspecific adsorption enhance device specificity. Branched and hyperbranched polymers can also be used to amplify the signal from small amounts of detected material. The further development of hyperbranched polymers in liquid biopsy applications will enhance device capabilities and help these critical technologies reach the oncology clinic where they are sorely needed. This article is categorized under: Diagnostic Tools > Biosensing Diagnostic Tools > Diagnostic Nanodevices.


Asunto(s)
Exosomas , Neoplasias , Diseño de Equipo , Humanos , Biopsia Líquida , Neoplasias/diagnóstico , Polímeros
16.
Virus Evol ; 7(2): veab077, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34760282

RESUMEN

Genomic epidemiology is a core component in investigating the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this study, the efficacy of control strategies in South Korea was evaluated using genomic epidemiology based on viral genome sequences of 2,065 SARS-CoV-2 cases identified in South Korea from January 2020 to December 2020. Phylogenetic analysis revealed that the majority of viruses introduced from inbound travelers did not further spread throughout South Korea; however, four distinct subgroups (KR.1-4, belonging to B.1.497, B.1, K.1 and B.41) of viruses caused local epidemics. After the introduction of enhanced social distancing, the viral population size and daily case numbers decreased, and KR.2-4 subgroups were extinguished from South Korea. Nevertheless, there was a subsequent increase in KR.1 subgroups after the downgrading of social distancing level. These results indicate that the international traveler quarantine system implemented in South Korea along with social distancing measures efficiently reduced the introduction and spread of SARS-CoV-2, but it was not completely controlled. An improvement of control strategies will be required to better control SARS-CoV-2, its variants, and future pandemic viruses.

19.
J Alzheimers Dis Rep ; 5(1): 7-13, 2021 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-33681712

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is characterized by the aggregation of two pathological proteins, amyloid-ß (Aß) and tau, leading to neuronal and cognitive dysfunction. Clearance of either Aß or tau aggregates by immunotherapy has become a potential therapy, as these aggregates are found in the brain ahead of the symptom onset. Given that Aß and tau independently and cooperatively play critical roles in AD development, AD treatments might require therapeutic approaches to eliminate both aggregates together. OBJECTIVE: We aimed to discover a chemical drug candidate from natural sources for direct dissociation of both insoluble Aß and tau aggregates through in vitro assessments. METHODS: We isolated four borrelidin chemicals from a saltern-derived halophilic actinomycete strain of rare genus Nocardiopsis and simulated their docking interactions with Aß fibrils. Then, anti-cytotoxic, anti-Aß, and anti-tau effects of borrelidins were examined by MTT assays with HT22 hippocampal cell line, thioflavin T assays, and gel electrophoresis. RESULTS: When HT22 cells were exposed to Aß aggregates, the treatment of borrelidins alleviates the Aß-induced toxicity. These anti-cytotoxic effects can be derived from the inhibitory functions of borrelidins against the Aß aggregation as shown in thioflavin T and gel electrophoretic analyses. Among them, especially borrelidin, which exhibits the highest probability of docking, not only dissociates Aß aggregates but also directly regulates tau aggregation. CONCLUSION: Borrelidin dissociates insoluble Aß and tau aggregates together and our findings support the view that it is possible to develop an alternative chemical approach mimicking anti-Aß or anti-tau immunotherapy for clearance of both aggregates.

20.
ACS Chem Neurosci ; 12(1): 99-108, 2021 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-33332107

RESUMEN

Amyloid-ß (Aß) aggregated forms are highly associated with the onset of Alzheimer's disease (AD). Aß abnormally accumulates in the brain and induces neuronal damages and symptoms of AD such as cognitive impairment and memory loss. Since an antibody drug, aducanumab, reduces Aß aggregates and delays clinical decline, clearance of accumulated Aß in the brain is accounted as a therapeutic approach to treat AD. In this study, we synthesized 17 benzofuran derivatives that may disaggregate Aß oligomers and plaques into inert monomers. By a series of Aß aggregation inhibition and aggregates' disaggregation assays utilizing thioflavin T assays and gel electrophoresis, YB-9, 2-((5-methoxy-3-(4-methoxyphenyl)benzofuran-6-yl)oxy)acetic acid, was selected as the final Aß-disaggregator candidate. When it was orally administered to the 8-month-old male transgenic mouse model with five familial AD mutations (5XFAD) via drinking water daily for two months, Aß oligomers and plaques in hippocampus were reduced. Consequently, decreased astrogliosis and rescued synaptic dysfunction were observed in the hippocampus of YB-9-treated 5XFAD mice compared with the untreated transgenic control group.


Asunto(s)
Enfermedad de Alzheimer , Benzofuranos , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Transgénicos , Placa Amiloide
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA