Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nutr Res ; 128: 14-23, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39002358

RESUMEN

Sesamolin, a lignan isolated from sesame oils, has been found to possess neuroprotective, anticancer, and free radical scavenging properties. We hypothesized that sesamolin could stimulate the activity of nuclear factor erythroid-derived 2-like 2 (Nrf2) and inhibit adipocyte differentiation of preadipocytes. The objective of this study was to investigate effects of sesamolin on adipocyte differentiation and its underlying molecular mechanisms. In this study, we determined the effects of treatment with 25 to 100 µM sesamolin on adipogenesis in cell culture systems. Sesamolin inhibited lipid accumulation and suppressed the expression of adipocyte markers during adipocyte differentiation of C3H10T1/2, 3T3-L1, and primary preadipocytes. Mechanism studies revealed that sesamolin increased Nrf2 protein expression without inducing its mRNA, leading to an increase in the expression of Nrf2 target genes such as heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 (Nqo1) in C3H10T1/2 adipocytes and mouse embryonic fibroblasts. These effects were significantly attenuated in Nrf2 knockout (KO) mouse embryonic fibroblasts, indicating that effects of sesamolin were dependent on Nrf2. In H1299 human lung cancer cells with KO of Kelch like-ECH-associated protein 1 (Keap1), a negative regulator of Nrf2, sesamolin failed to further increase Nrf2 protein expression. However, upon reexpressing Keap1 in Keap1 KO cells, the ability of sesamolin to elevate Nrf2 protein expression was restored, highlighting the crucial role of Keap1 in sesamolin-induced Nrf2 activation. Taken together, these findings show that sesamolin can inhibit adipocyte differentiation through Keap1-mediated Nrf2 activation.


Asunto(s)
Células 3T3-L1 , Adipocitos , Adipogénesis , Diferenciación Celular , Proteína 1 Asociada A ECH Tipo Kelch , NAD(P)H Deshidrogenasa (Quinona) , Factor 2 Relacionado con NF-E2 , Factor 2 Relacionado con NF-E2/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Animales , Ratones , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipogénesis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Dioxoles/farmacología , Ratones Noqueados , Lignanos/farmacología , Humanos , Hemo-Oxigenasa 1/metabolismo , Hemo-Oxigenasa 1/genética , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética
2.
Int J Mol Sci ; 25(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38791319

RESUMEN

Glutathione S-transferase omega 1 (GstO1) catalyzes deglutathionylation and plays an important role in the protein glutathionylation cycle in cells. GstO1 contains four conserved cysteine residues (C32, C90, C191, C236) found to be mutated in patients with associated diseases. In this study, we investigated the effects of cysteine mutations on the structure and function of GstO1 under different redox conditions. Wild-type GstO1 (WT) was highly sensitive to hydrogen peroxide (H2O2), which caused precipitation and denaturation at a physiological temperature. However, glutathione efficiently inhibited the H2O2-induced denaturation of GstO1. Cysteine mutants C32A and C236A exhibited redox-dependent stabilities and enzyme activities significantly different from those of WT. These results indicate that C32 and C236 play critical roles in GstO1 regulation by sensing redox environments and explain the pathological effect of cysteine mutations found in patients with associated diseases.


Asunto(s)
Cisteína , Glutatión Transferasa , Glutatión , Peróxido de Hidrógeno , Oxidación-Reducción , Cisteína/metabolismo , Glutatión Transferasa/metabolismo , Glutatión Transferasa/genética , Humanos , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Mutación
3.
Plants (Basel) ; 13(5)2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38475570

RESUMEN

Plants that possess a diverse range of bioactive compounds are essential for maintaining human health and survival. The diversity of bioactive compounds with distinct therapeutic potential contributes to their role in health systems, in addition to their function as a source of nutrients. Studies on the genetic makeup and composition of bioactive compounds have revealed them to be rich in steroidal alkaloids, saponins, terpenes, flavonoids, and phenolics. The Solanaceae family, having a rich abundance of bioactive compounds with varying degrees of pharmacological activities, holds significant promise in the management of different diseases. Investigation into Solanum species has revealed them to exhibit a wide range of pharmacological properties, including antioxidant, hepatoprotective, cardioprotective, nephroprotective, anti-inflammatory, and anti-ulcerogenic effects. Phytochemical analysis of isolated compounds such as diosgenin, solamargine, solanine, apigenin, and lupeol has shown them to be cytotoxic in different cancer cell lines, including liver cancer (HepG2, Hep3B, SMMC-772), lung cancer (A549, H441, H520), human breast cancer (HBL-100), and prostate cancer (PC3). Since analysis of their phytochemical constituents has shown them to have a notable effect on several signaling pathways, a great deal of attention has been paid to identifying the biological targets and cellular mechanisms involved therein. Considering the promising aspects of bioactive constituents of different Solanum members, the main emphasis was on finding and reporting notable cultivars, their phytochemical contents, and their pharmacological properties. This review offers mechanistic insights into the bioactive ingredients intended to treat different ailments with the least harmful effects for potential applications in the advancement of medical research.

4.
Heliyon ; 10(1): e23512, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38187250

RESUMEN

Tetranectin (TN), a serum protein, is closely associated with different types of cancers. TN binds plasminogen and promotes the proteolytic activation of plasminogen into plasmin, which suggests that TN is involved in remodeling the extracellular matrix and cancer tissues during cancer development. TN is also associated with other diseases, such as developmental disorders, cardiovascular diseases, neurological diseases, inflammation, and diabetes. Although the functional mechanism of TN in diseases is not fully elucidated, TN binds different proteins, such as structural protein, a growth factor, and a transcription regulator. Moreover, TN changes and regulates protein functions, indicating that TN-binding proteins mediate the association between TN and diseases. This review summarizes the current knowledge of TN-associated diseases and TN functions with TN-binding proteins in different diseases. In addition, potential TN-targeted disease treatment by inhibiting the interaction between TN and its binding proteins is discussed.

5.
Molecules ; 28(23)2023 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-38067419

RESUMEN

This study was undertaken to investigate the interaction between the sodium channel blocker amiloride (AML) and human serum albumin (HSA). A combination of multi-spectroscopic techniques and computational methods were employed to identify the AML binding site on HSA and the forces responsible for the formation of the HSA-AML complex. Our findings revealed that AML specifically binds to Sudlow's site II, located in subdomain IIIA of HSA, and that the complex formed is stabilized using van der Waals hydrogen-bonding and hydrophobic interactions. FRET analysis showed that the distance between AML and Trp214 was optimal for efficient quenching. UV-Vis spectroscopy and circular dichroism indicated minor changes in the structure of HSA after AML binding, and molecular dynamics simulations (MDS) conducted over 100 ns provided additional evidence of stable HSA-AML-complex formation. This study enhances understanding of the interaction between AML and HSA and the mechanism responsible.


Asunto(s)
Leucemia Mieloide Aguda , Albúmina Sérica Humana , Humanos , Albúmina Sérica Humana/química , Simulación del Acoplamiento Molecular , Amilorida/farmacología , Unión Proteica , Sitios de Unión , Dicroismo Circular , Termodinámica , Espectrometría de Fluorescencia
6.
BMB Rep ; 56(8): 457-462, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37156632

RESUMEN

Glutathione S-transferase omega 1 (GstO1) is closely associated with various human diseases, including obesity and diabetes, but its functional mechanism is not fully understood. In the present study, we found that the GstO1-specific inhibitor C1-27 effectively suppressed the adipocyte differentiation of 3T3-L1 preadipocytes. GstO1 expression was immediately upregulated upon the induction of adipocyte differentiation, and barely altered by C1-27. However, C1-27 significantly decreased the stability of GstO1. Moreover, GstO1 catalyzed the deglutathionylation of cellular proteins during the early phase of adipocyte differentiation, and C1-27 inhibited this activity. These results demonstrate that GstO1 is involved in adipocyte differentiation by catalyzing the deglutathionylation of proteins critical for the early phase of adipocyte differentiation. [BMB Reports 2023; 56(8): 457-462].


Asunto(s)
Adipocitos , Glutatión Transferasa , Animales , Humanos , Ratones , Células 3T3-L1 , Adipocitos/metabolismo , Catálisis , Diferenciación Celular , Glutatión Transferasa/metabolismo
7.
Toxins (Basel) ; 15(4)2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37104217

RESUMEN

The genus Hapalochlaena, including the blue-lined octopus Hapalochlaena fasciata (H. fasciata), is highly toxic. Venomous, blue-lined octopuses were recently found in Korea, but their toxicity, toxin composition, and distribution remain largely unknown. Here we estimated the geographic distribution of the organisms along the Korean coast and clarified their toxicity. Tetrodotoxin (TTX) was present in all three specimens of H. fasciata examined, although the toxicity varied largely between individuals. The mean TTX concentration in the whole body of the three specimens was 6.5 ± 2.2 µg/g (range 3.3-8.5 µg/g). Among the body parts examined, the salivary glands exhibited the highest concentration (22.4 ± 9.7 µg/g). From 2012 to 2021, 26 individuals were obtained nearly every month from different regions of the Korean coast. A non-fatal case of a blue-lined octopus bite was reported along the Korean coast in June 2015. This is the first report on the widespread distribution of blue-lined octopuses on the Korean coast and TTX detection. The widespread distribution of the TTX-bearing H. fasciata along the Korean coast within the temperate zone indicates that the species may soon become a serious health issue in Korea. The toxicity of this species is also a potentially significant human health risk.


Asunto(s)
Octopodiformes , Animales , Humanos , Tetrodotoxina/toxicidad , Ponzoñas , Glándulas Salivales , República de Corea
8.
Cells ; 11(20)2022 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-36291131

RESUMEN

Immunoglobulin-like cell adhesion molecule (IgLON4) is a glycosylphosphatidylinositol-anchored membrane protein that has been associated with neuronal growth and connectivity, and its deficiency has been linked to increased fat mass and low muscle mass. Adequate information on IgLON4 is lacking, especially in the context of skeletal muscle. In this study, we report that IgLON4 is profusely expressed in mouse muscles and is intensely localized on the cell membrane. IgLON4 expression was elevated in CTX-injected mouse muscles, which confirmed its role during muscle regeneration, and was abundantly expressed at high concentrations at cell-to-cell adhesion and interaction sites during muscle differentiation. IgLON4 inhibition profoundly affected myotube alignment, and directional analysis confirmed this effect. Additionally, results demonstrating a link between IgLON4 and lipid rafts during myogenic differentiation suggest that IgLON4 promotes differentiation by increasing lipid raft accumulation. These findings support the notion that a well-aligned environment promotes myoblast differentiation. Collectively, IgLON4 plays a novel role in myogenesis and regeneration, facilitates myotube orientation, and is involved in lipid raft accumulation.


Asunto(s)
Glicosilfosfatidilinositoles , Desarrollo de Músculos , Ratones , Animales , Adhesión Celular , Glicosilfosfatidilinositoles/metabolismo , Glicosilfosfatidilinositoles/farmacología , Fibras Musculares Esqueléticas/metabolismo , Moléculas de Adhesión Celular/metabolismo
9.
Biomaterials ; 285: 121550, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35533439

RESUMEN

Effective cancer therapy aims to treat not only primary tumors but also metastatic and recurrent cancer. Immune check point blockade-mediated immunotherapy showed promising effect against tumors; however, it still has a limited effect in metastatic or recurrent cancer. Here, we extracted recombinant murine programmed death-1 (rmPD-1) proteins. The extracted rmPD-1 effectively bound to CT-26 and 4T1 cells expressing PD-L1 and PD-L2. The rmPD-1 did not alter the activation of dendritic cells (DCs); however, rmPD-1 promoted T cell-mediated anti-cancer immunity against CT-26 tumors in mice. Moreover, rmPD-1 decorated thermal responsive hybrid nanoparticles (piHNPs) promoted apoptotic and necrotic cell death of CT-26 cells in response to laser irradiation at 808 nm consequently, it promoted anti-tumor effects against the 1st challenged CT-26 tumors in mice. In addition, piHNP-mediated cured mice from 1st challenged CT-26 was also prevented the 2nd challenged lung metastatic tumor growth, which was dependent of cancer antigen-specific memory T cell immunity. It was also confirmed that the lung metastatic growth of 2nd challenged 4T1 breast cancer was also prevented in cured mice from 1st challenged 4T1 by piHNP. Thus, these data demonstrate that rmPD-1 functions as an immune checkpoint blockade for the treatment of tumors, and piHNPs could be a novel therapeutic agent for preventing cancer metastasis and recurrence.


Asunto(s)
Nanopartículas , Receptor de Muerte Celular Programada 1 , Animales , Línea Celular Tumoral , Inmunidad , Inmunoterapia , Ratones , Recurrencia Local de Neoplasia , Receptor de Muerte Celular Programada 1/metabolismo
10.
Int J Biol Macromol ; 209(Pt A): 211-219, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35358581

RESUMEN

Tetranectin is a serum protein that binds to plasminogen and enhances its proteolytic activation, which underlies the involvement of tetranectin in the development of several carcinomas including colon cancer. In the present study, structure-based in silico screening of natural products showed that epigallocatechin gallate with anticancer effects binds to tetranectin. Binding to epigallocatechin gallate to tetranectin was confirmed by intrinsic fluorescence quenching assays and isothermal titration calorimetry. Furthermore, epigallocatechin gallate efficiently inhibited the activity of tetranectin to enhance the activation of plasminogen. We also found that tetranectin enhanced the proliferation of CT-26 colon cancer cells. Epigallocatechin gallate showed its cytotoxic effect on CT-26 cells due to its binding to tetranectin and the consequent suppression of the cell proliferation. These results demonstrate that the anticancer effect of epigallocatechin gallate is mediated, at least in part, by inhibiting tetranectin as a binding target.


Asunto(s)
Catequina , Neoplasias del Colon , Catequina/análogos & derivados , Catequina/química , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Humanos , Lectinas Tipo C , Plasminógeno/metabolismo
11.
BMB Rep ; 55(3): 154-159, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34743784

RESUMEN

Protein S-glutathionylation is a reversible post-translational modification on cysteine residues forming a mixed disulfide with glutathione. S-glutathionylation, not only protects proteins from oxidation but also regulates the functions of proteins involved in various cellular signaling pathways. In this study, we developed a method for the detection of S-glutathionylated proteins (ProSSG) using eosin-glutathione (E-GSH) and mouse glutaredoxin 1 (mGrx1). ProSSG was efficiently and specifically labeled with E-GSH to form ProSSG-E via thiol-disulfide exchange. ProSSG-E was readily luminescent allowing the detection of ProSSG with semi-quantitative determination. In addition, a deglutathionylation enzyme mGrx1 specifically released E-GSH from ProSSG-E, which increased fluorescence allowing a sensitive determination of ProSSG levels. Application of the method to the adipocyte differentiation of 3T3-L1 cells showed specific detection of ProSSG and its increase upon differentiation induction, which was consistent with the result obtained by conventional immunoblot analysis, but with greater specificity and sensitivity. [BMB Reports 2022; 55(3): 154-159].


Asunto(s)
Glutarredoxinas , Glutatión , Adipocitos/metabolismo , Animales , Eosina Amarillenta-(YS) , Glutatión/metabolismo , Ratones , Oxidación-Reducción , Procesamiento Proteico-Postraduccional
12.
Int J Nanomedicine ; 16: 7711-7726, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34848956

RESUMEN

INTRODUCTION: Protein-derived biogenic syntheses of inorganic nanoparticles have gained immense attention because of their broad spectrum of applications. Proteins offer a reducing environment to enable the synthesis of nanoparticles and encapsulate synthesized nanoparticles and provide them temporal stability in addition to biocompatibility. METHODS: In the present study, Benincasa hispida fruit proteins were used to synthesize silver nanoparticles (AgNPs) at 37 °C over five days of incubation. The synthesis of AgNPs was confirmed by UV-Vis spectroscopy, TEM, zeta potential, and DLS analyses. Further, these NPs depicted antibacterial and antibiofilm effects. Additionally, the anticancer activities of nanoparticles were also tested against the lung cancer cell line (A549) with respect to the normal cell line (NRK) using MTT assay. Further, the estimation of ROS generation through DCFH-DA staining along with a reduction in mitochondrial membrane potential by Mito Tracker Red CMX staining was carried out. Moreover, nuclear degradation in the AgNPs treated cells was cross-checked by DAPI staining. RESULTS: The average size of AgNPs was detected to be 27 ±1 nm by TEM analysis, whereas surface encapsulation by protein was determined by FTIR spectroscopy. These NPs were effective against bacterial pathogens such as Escherichia coli, Staphylococcus aureus, Salmonella enteric, and Staphylococcus epidermis with MICs of 148.12 µg/mL, 165.63 µg/mL, 162.77 µg/mL, and 124.88 µg/mL, respectively. Furthermore, these nanoparticles inhibit the formation of biofilms of E. coli, S. aureus, S. enteric, and S. epidermis by 71.14%, 73.89%, 66.66%, and 64.81%, respectively. Similarly, these nanoparticles were also found to inhibit (IC50 = 57.11 µM) the lung cancer cell line (A549). At the same time, they were non-toxic against NRK cells up to a concentration of 200 µM. DISCUSSION: We successfully synthesized potentially potent antibacterial, antibiofilm and anticancer biogenic AgNPs.


Asunto(s)
Nanopartículas del Metal , Plata , Antibacterianos/farmacología , Escherichia coli , Frutas , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Plata/farmacología , Staphylococcus aureus
13.
Nanomaterials (Basel) ; 11(12)2021 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-34947576

RESUMEN

Fungal metabolites, proteins, and enzymes have been rich sources of therapeutics so far. Therefore, in this study, the hypha extract of a newly identified noble fungus (Alternaria sp. with NCBI Accession number: MT982648) was used to synthesize silver nanoparticles (F-AgNPs) to utilize against bacteria, fungi, and lung cancer. F-AgNPs were characterized by using physical techniques, including UV-visible spectroscopy, zeta potential, DLS, XRD, TEM, and HR-TEM. The particles were found to be polydispersed and quasi-spherical in shape under TEM. They had an average size of ~15 nm. The well dispersed particles were found to have consistent crystallinity with cubic phase geometry under XRD and HR-TEM. The presence of different functional groups on the surfaces of biosynthesized F-AgNPs was confirmed by FTIR. The particle distribution index was found to be 0.447 with a hydrodynamic diameter of ~47 d.nm, and the high value of zeta potential (-20.3 mV) revealed the stability of the nanoemulsion. These particles were found to be active against Staphylococcus aureus (multidrug resistance-MDR), Klebsiella pneumonia, Salmonella abony, and Escherichia coli (MDR) with MIC50 10.3, 12.5, 22.69, and 16.25 µg/mL, respectively. Particles also showed inhibition against fungal strains, including A. flavus, A. niger, T. viridens, and F. oxysporium. Their inhibition of biofilm formation by the same panel of bacteria was also found to be very promising and ranged from 16.66 to 64.81%. F-AgNPs also showed anticancer potential (IC50-21.6 µg/mL) with respect to methotrexate (IC50-17.7 µg/mL) against lung cancer cell line A549, and they did not result in any significant inhibition of the normal cell line BEAS-2. The particles were found to alter the mitochondrial membrane potential, thereby disturbing ATP synthesis and leading to high ROS formation, which are responsible for cell membrane damage and release of LDH, intracellular proteins, lipids, and DNA. A high level of ROS also elicits pro-inflammatory signaling cascades that lead to programmed cell death by either apoptosis or necrosis.

15.
Cell Death Discov ; 7(1): 257, 2021 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-34548475

RESUMEN

Acetylation of α-tubulin lysine 40 (αK40) contributes to microtubule (MT) stability and is essential for neuronal development and function, whereas excessive αK40 deacetylation is observed in neurodegenerative disorders including Alzheimer's disease (AD). Here we identified inhibitor of DNA binding 2 (Id2) as a novel MT-binding partner that interacts with α-tubulin and enhances αK40 acetylation, leading to MT polymerization in the neurons. Commensurate with our finding that the low levels of Id2 expression along with a reduced αK40 acetylation in the postmortem human AD patient and 5X-FAD, AD model mice brain, Id2 upregulation in the hippocampus of 5X-FAD, which exhibit high levels of Sirt2 expression, increased αK40 acetylation and reconstitutes axon growth. Hence our study suggests that Id2 is critical for maintaining MT stability during neural development and the potential of Id2 to counteract pathogenic Sirt2 activity in AD.

16.
Int J Biol Macromol ; 190: 508-519, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34481855

RESUMEN

d-ribose, a reducing sugar, in diabetic hyperglycemia provokes non-enzymatic glycoxidation of hemoglobin (Hb), an abundant protein of red blood cells (RBCs). Different types of intermediates adduct formation occur during glycoxidation, such as advanced glycation end-products (AGEs) which lead to amyloid formation due to structural and conformational alterations in protein. Therefore, the study of these intermediate adducts plays a pivotal role to discern their relationship with diabetes mellitus and related disorders. Here, we investigated the interaction mechanism of d-ribose with Hb, and Hb prebound phytochemical thymoquinone (TQ). Our investigation reveals that the interaction of TQ with histidine residues of Hb interferes with the interaction of d-ribose with glycine residues at the glycation-site. Based on that, we had performed a time-based (21-days) in-vitro glycoxidation study at 37 °C to investigate the structural perturbation mechanism of Hb at different time-intervals in absence/presence of TQ. We found that prolonged glycoxidation induces amyloid formation in absence of TQ but in its presence, the process was prohibited. In summary, this study examined and characterized biophysically different intermediate-states of protein carrying glycoxidation-modification. Our findings suggested that TQ potentially affects interaction of d-ribose with Hb that prevents glycoxidation and protofibril formation, which establishes TQ as a potential therapeutic agent.


Asunto(s)
Benzoquinonas/farmacología , Fenómenos Biofísicos , Hemoglobinas/metabolismo , Fitoquímicos/farmacología , Benzotiazoles/metabolismo , Calorimetría , Dispersión Dinámica de Luz , Productos Finales de Glicación Avanzada/química , Productos Finales de Glicación Avanzada/metabolismo , Glicosilación/efectos de los fármacos , Hemoglobinas/química , Hemoglobinas/ultraestructura , Hidrodinámica , Interacciones Hidrofóbicas e Hidrofílicas , Simulación del Acoplamiento Molecular , Nefelometría y Turbidimetría , Agregado de Proteínas , Unión Proteica , Estructura Secundaria de Proteína , Ribosa/química , Espectrometría de Fluorescencia , Termodinámica
17.
BMB Rep ; 54(7): 374-379, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33691910

RESUMEN

Tetranectin (TN), an adipogenic serum protein, enhances adipocyte differentiation, however, its functional mechanism has yet to be elucidated. In the present study, we investigated the adipogenic function of TN by using medium containing TN-depleted fetal bovine serum (TN-del-FBS) and recombinant mouse TN (mTN). The adipocyte differentiation of 3T3-L1 cells was significantly enhanced by mTN supplementation essentially at differentiation induction, which indicated a potential role of the protein in the early differentiation phase. The adipogenic effect of mTN was more significant with insulin in the differentiation induction cocktail, implicating their close functional relationship. mTN enhanced not only the proliferation of growing cells, but also mitotic clonal expansion (MCE) that is a prerequisite for adipocyte differentiation in the early phase. Consistently, mTN increased the phosphorylation of ERK in the early phase of adipocyte differentiation. Results of this study demonstrate that the adipogenic function of mTN is mediated by enhancing MCE via ERK signaling. [BMB Reports 2021; 54(7): 374-379].


Asunto(s)
Adipocitos/metabolismo , Lectinas Tipo C/metabolismo , Células 3T3-L1 , Adipocitos/citología , Adipogénesis , Animales , Diferenciación Celular , Proliferación Celular , Lectinas Tipo C/sangre , Lectinas Tipo C/fisiología , Sistema de Señalización de MAP Quinasas/fisiología , Ratones , Mitosis , Transducción de Señal
18.
Cells ; 10(2)2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33671182

RESUMEN

IgLON5 is a cell adhesion protein belonging to the immunoglobulin superfamily and has important cellular functions. The objective of this study was to determine the role played by IgLON5 during myogenesis. We found IgLON5 expression progressively increased in C2C12 myoblasts during transition from the adhesion to differentiation stage. IgLON5 knockdown (IgLON5kd) cells exhibited reduced cell adhesion, myotube formation, and maturation and reduced expressions of different types of genes, including those coding for extracellular matrix (ECM) components (COL1a1, FMOD, DPT, THBS1), cell membrane proteins (ITM2a, CDH15), and cytoskeletal protein (WASP). Furthermore, decreased IgLON5 expression in FMODkd, DPTkd, COL1a1kd, and ITM2akd cells suggested that IgLON5 and these genes mutually control gene expression during myogenesis. IgLON5 immunoneutralization resulted in significant reduction in the protein level of myogenic markers (MYOD, MYOG, MYL2). IgLON5 expression was higher in the CTX-treated gastrocnemius mice muscles (day 7), which confirmed increase expression of IgLON5 during muscle. Collectively, these results suggest IgLON5 plays an important role in myogenesis, muscle regeneration, and that proteins in ECM and myoblast membranes form an interactive network that establishes an essential microenvironment that ensures muscle stem cell survival.


Asunto(s)
Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Desarrollo de Músculos/fisiología , Mioblastos/citología , Animales , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína MioD/genética
19.
Front Cell Infect Microbiol ; 10: 575404, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33262955

RESUMEN

The resurgence of SARS in the late December of 2019 due to a novel coronavirus, SARS-CoV-2, has shadowed the world with a pandemic. The physiopathology of this virus is very much in semblance with the previously known SARS-CoV and MERS-CoV. However, the unprecedented transmissibility of SARS-CoV-2 has been puzzling the scientific efforts. Though the virus harbors much of the genetic and architectural features of SARS-CoV, a few differences acquired during its evolutionary selective pressure is helping the SARS-CoV-2 to establish prodigious infection. Making entry into host the cell through already established ACE-2 receptor concerted with the action of TMPRSS2, is considered important for the virus. During the infection cycle of SARS-CoV-2, the innate immunity witnesses maximum dysregulations in its molecular network causing fatalities in aged, comorbid cases. The overt immunopathology manifested due to robust cytokine storm shows ARDS in severe cases of SARS-CoV-2. A delayed IFN activation gives appropriate time to the replicating virus to evade the host antiviral response and cause disruption of the adaptive response as well. We have compiled various aspects of SARS-CoV-2 in relation to its unique structural features and ability to modulate innate as well adaptive response in host, aiming at understanding the dynamism of infection.


Asunto(s)
COVID-19/inmunología , SARS-CoV-2/fisiología , Animales , COVID-19/genética , COVID-19/virología , Síndrome de Liberación de Citoquinas/genética , Síndrome de Liberación de Citoquinas/inmunología , Humanos , Inmunidad Innata , Síndrome de Dificultad Respiratoria/genética , Síndrome de Dificultad Respiratoria/inmunología , Síndrome de Dificultad Respiratoria/virología , SARS-CoV-2/genética , SARS-CoV-2/inmunología
20.
Mar Drugs ; 18(12)2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33302530

RESUMEN

Natural polysaccharides exhibit beneficial immune modulatory effects, including immune stimulatory and anti-cancer activities. In this study, we examined the effect of Codium fragile polysaccharide (CFP) on natural killer (NK) cell activation, and its effect on tumor-bearing mice. Intravenous CFP treatment of C57BL/6 mice resulted in the upregulation of CD69, which is a marker associated with NK cell activation. In addition, intracellular levels of interferon (IFN)-γ and the cytotoxic mediators perforin and granzyme B were markedly increased in response to the CFP treatment of splenic NK cells. IFN-γ production by NK cells was directly induced by CFP, whereas the upregulation of CD69 and cytotoxic mediators required IL-12. Finally, intraperitoneal treatment with CFP prevented CT-26 (murine carcinoma) tumor cell infiltration in the lungs, without significantly reducing the body weight. In addition, treatment with CFP prevented B16 melanoma cell infiltration in the lung of C57BL/6 mice. Moreover, the anti-tumor effect was diminished by the depletion of NK cells. Therefore, these data suggest that CFP may be used as an NK cell stimulator to produce a phenomenon that contributes to anti-cancer immunity.


Asunto(s)
Antineoplásicos/farmacología , Chlorophyta/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Células Asesinas Naturales/efectos de los fármacos , Activación de Linfocitos/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Polisacáridos/farmacología , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación de Linfocitos T/metabolismo , Antineoplásicos/aislamiento & purificación , Línea Celular Tumoral , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Granzimas , Interferón gamma/metabolismo , Interleucina-12/metabolismo , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Lectinas Tipo C/metabolismo , Linfocitos Infiltrantes de Tumor/inmunología , Linfocitos Infiltrantes de Tumor/metabolismo , Melanoma Experimental/inmunología , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Polisacáridos/aislamiento & purificación , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Bazo/efectos de los fármacos , Bazo/inmunología , Bazo/metabolismo , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA