RESUMEN
As cellular senescence, reactive oxygen species (ROS) accumulate excessively, causing cellular damage. Flavonoids derived from natural products are known for their antioxidant effects and their ability to delay cellular senescence. Previous studies have attempted to mitigate cellular senescence using flavonoids from natural sources. However, the detailed mechanisms and regulatory targets of some flavonoids exhibiting antioxidant effects have not been fully elucidated. Therefore, we screened a library of flavonoids for antioxidant properties. Isoschaftoside, a glycosidic flavonoid, significantly reduced ROS levels in senescent cells. It was found that mitochondrial function was restored, and dependence on glycolysis was reduced in senescent cells treated with isoschaftoside. Additionally, we identified that isoschaftoside suppresses ROS by reducing the expression of RAC2 and LINC00294 in senescent cells. Taken together, this study establishes a novel mechanism for ROS inhibition and the regulation of cellular senescence by isoschaftoside. Our findings contribute important insights to antioxidant and anti-senescence research.
Asunto(s)
Antioxidantes , Senescencia Celular , Proteína RCA2 de Unión a GTP , Especies Reactivas de Oxígeno , Proteínas de Unión al GTP rac , Senescencia Celular/efectos de los fármacos , Humanos , Especies Reactivas de Oxígeno/metabolismo , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rac/genética , Antioxidantes/farmacología , Antioxidantes/química , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Glicósidos/farmacología , Glicósidos/química , Flavonoides/farmacología , Flavonoides/química , Línea CelularRESUMEN
Hypothalamic innate immune responses to dietary fats underpin the pathogenesis of obesity, in which microglia play a critical role. Progranulin (PGRN) is an evolutionarily -conserved secretory protein containing seven-and-a-half granulin (GRN) motifs. It is cleaved into GRNs by multiple proteases. In the central nervous system, PGRN is highly expressed in microglia. To investigate the role of microglia-derived PGRN in metabolism regulation, we established a mouse model with a microglia-specific deletion of the Grn gene, that encodes PGRN. Mice with microglia-specific Grn gene depletion displayed dietdependent metabolic phenotypes. Under normal diet-fed conditions, microglial Grn gene depletion produced adverse outcomes like fasting hyperglycemia and aberrant activation of hypothalamic microglia. However, when fed a high fat diet (HFD), these mice exhibited beneficial effects, including less obesity, glucose dysregulation, and hypothalamic inflammation. These differing phenotypes appear linked to increased extracellular cleavage of anti-inflammatory PGRN into proinflammatory GRNs in the hypothalamus during overnutrition. In support of this, inhibiting PGRN cleavage attenuated HFD-induced hypothalamic inflammation and obesity progression. Our results suggest that the extracellular cleavage of microglia-derived PGRN plays a significant role in promoting hypothalamic inflammation and obesity during periods of overnutrition. Therefore, therapies that inhibit PGRN cleavage may be beneficial for combating dietinduced obesity.
RESUMEN
To explore a highly conductive flexible platform, this study develops PIDF-BT@SWCNT by wrapping single-walled carbon nanotubes (SWCNTs) with a conjugated polymer, PIDF-BT, known for its effective doping properties. By evaluating the doping behaviors of various dopants on PIDF-BT, appropriate dopant combinations for cascade doping are selected to improve the doping efficiency of PIDF-BT@SWCNT. Specifically, using F4TCNQ or F6TCNNQ as the first dopant, followed by AuCl3 as the second dopant, demonstrates remarkable doping efficiency, surpassing that of the individual dopants and yielding an exceptional electrical conductivity exceeding 6000 S/cm. Characterization using X-ray photoelectron spectroscopy and Raman spectroscopy elucidates the doping mechanism, revealing an increase in the proportion of electron-donating atoms and the ratio of quinoid structures upon F4TCNQ/AuCl3 cascade doping. These findings offer insights into optimizing dopant combinations for cascade doping, showcasing its advantages in enhancing doping efficiency and resulting electrical conductivity compared with single dopant processes.
RESUMEN
[Erratum to: BMB Reports 2024; 57(3): 149-154, PMID: 37817436, PMCID: PMC10979347] The BMB Reports would like to correct in BMB Rep. 57(3):149-154, titled "Stomach clusterin as a gut-derived feeding regulator". This research was supported by the Creative-Pioneering Researchers Program through Seoul National University. Since grant name and number are incorrect, this information has now been corrected as follows: This work was supported by the National Research Foundation of Korea funded by the Korean government (2020R1A2C3004843, 2022M3E5E8017213 to M-S.K., 2020R1C1C10 08033 to O.K.) and by Creative-Pioneering Researchers Program through Seoul National University (to O.K.). The authors apologize for any inconvenience or confusion that may be caused by this error. The ACKNOWLEDGEMENTS of Original PDF version have been corrected.
RESUMEN
Controlling miscibility between mixture components helps induce spontaneous phase separation into distinct domain sizes, thereby resulting in porous conjugated polymer (CP) films with different pore sizes after selective removal of auxiliary components. The miscibility of the CP mixture can be tailored by blending auxiliary model components designed by reflecting the difference in solubility parameters with the CP. The pore size increases as the difference in solubility parameters between the matrix CP and auxiliary component increases. Electrical properties are not critically damaged even after forming pores in the CP; however, excessive pore formation enables pores to spread to the vicinity of the dielectric layer of CP-based field-effect transistors (FETs), leading to partial loss of the carrier-transporting active channel in the FET. The porous structure is advantageous for not only increasing detection sensitivity but also improving the detection speed when porous CP films are applied to FET-based gas sensors for NO2 detection. The quantitative analysis of the response-recovery trend of the FET sensor using the Langmuir isotherm suggests that the response speed can be improved by more than 2.5 times with a 50-fold increase in NO2 sensitivity compared with pristine CP, which has no pores.
RESUMEN
Nicotinamide adenine dinucleotide (NAD)+ serves as a crucial coenzyme in numerous essential biological reactions, and its cellular availability relies on the activity of the nicotinamide phosphoribosyltransferase (NAMPT)-catalyzed salvage pathway. Here we show that treatment with saturated fatty acids activates the NAD+ salvage pathway in hypothalamic astrocytes. Furthermore, inhibition of this pathway mitigates hypothalamic inflammation and attenuates the development of obesity in male mice fed a high-fat diet (HFD). Mechanistically, CD38 functions downstream of the NAD+ salvage pathway in hypothalamic astrocytes burdened with excess fat. The activation of the astrocytic NAMPT-NAD+-CD38 axis in response to fat overload induces proinflammatory responses in the hypothalamus. It also leads to aberrantly activated basal Ca2+ signals and compromised Ca2+ responses to metabolic hormones such as insulin, leptin, and glucagon-like peptide 1, ultimately resulting in dysfunctional hypothalamic astrocytes. Our findings highlight the significant contribution of the hypothalamic astrocytic NAD+ salvage pathway, along with its downstream CD38, to HFD-induced obesity.
Asunto(s)
Grasas de la Dieta , NAD , Masculino , Ratones , Animales , NAD/metabolismo , Grasas de la Dieta/metabolismo , Astrocitos/metabolismo , Obesidad/metabolismo , Hipotálamo/metabolismo , Citocinas/metabolismoRESUMEN
5´-Adenosine monophosphate (AMP)-activated protein kinase (AMPK), a cellular energy sensor, is an essential enzyme that helps cells maintain stable energy levels during metabolic stress. The hypothalamus is pivotal in regulating energy balance within the body. Certain neurons in the hypothalamus are sensitive to fluctuations in food availability and energy stores, triggering adaptive responses to preserve systemic energy equilibrium. AMPK, expressed in these hypothalamic neurons, is instrumental in these regulatory processes. Hypothalamic AMPK activity is modulated by key metabolic hormones. Anorexigenic hormones, including leptin, insulin, and glucagon-like peptide 1, suppress hypothalamic AMPK activity, whereas the hunger hormone ghrelin activates it. These hormonal influences on hypothalamic AMPK activity are central to their roles in controlling food consumption and energy expenditure. Additionally, hypothalamic AMPK activity responds to variations in glucose concentrations. It becomes active during hypoglycemia but is deactivated when glucose is introduced directly into the hypothalamus. These shifts in AMPK activity within hypothalamic neurons are critical for maintaining glucose balance. Considering the vital function of hypothalamic AMPK in the regulation of overall energy and glucose balance, developing chemical agents that target the hypothalamus to modulate AMPK activity presents a promising therapeutic approach for metabolic conditions such as obesity and type 2 diabetes mellitus.
Asunto(s)
Proteínas Quinasas Activadas por AMP , Diabetes Mellitus Tipo 2 , Humanos , Proteínas Quinasas Activadas por AMP/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Hipotálamo/metabolismo , Insulina/metabolismo , GlucosaRESUMEN
Mitochondria function as platforms for bioenergetics, nutrient metabolism, intracellular signaling, innate immunity regulators, and modulators of stem cell activity. Thus, the decline in mitochondrial functions causes or correlates with diabetes mellitus and many aging-related diseases. Upon stress or damage, the mitochondria elicit a series of adaptive responses to overcome stress and restore their structural integrity and functional homeostasis. These adaptive responses to low-level or transient mitochondrial stress promote health and resilience to upcoming stress. Beneficial effects of low-grade mitochondrial stress, termed mitohormesis, have been observed in various organisms, including mammals. Accumulated evidence indicates that treatments boosting mitohormesis have therapeutic potential in various human diseases accompanied by mitochondrial stress. Here, we review multiple cellular signaling pathways and interorgan communication mechanisms through which mitochondrial stress leads to advantageous outcomes. We also discuss the relevance of mitohormesis in obesity, diabetes, metabolic liver disease, aging, and exercise.
Asunto(s)
Promoción de la Salud , Enfermedades Metabólicas , Animales , Humanos , Mitocondrias/metabolismo , Envejecimiento , Ejercicio Físico/fisiología , Estrés Oxidativo , MamíferosRESUMEN
The stomach has emerged as a crucial endocrine organ in the regulation of feeding since the discovery of ghrelin. Gut-derived hormones, such as ghrelin and cholecystokinin, can act through the vagus nerve. We previously reported the satiety effect of hypothalamic clusterin, but the impact of peripheral clusterin remains unknown. In this study, we administered clusterin intraperitoneally to mice and observed its ability to suppress fasting-driven food intake. Interestingly, we found its synergism with cholecystokinin and antagonism with ghrelin. These effects were accompanied by increased c-fos immunoreactivity in nucleus tractus solitarius, area postrema, and hypothalamic paraventricular nucleus. Notably, truncal vagotomy abolished this response. The stomach expressed clusterin at high levels among the organs, and gastric clusterin was detected in specific enteroendocrine cells and the submucosal plexus. Gastric clusterin expression decreased after fasting but recovered after 2 hours of refeeding. Furthermore, we confirmed that stomachspecific overexpression of clusterin reduced food intake after overnight fasting. These results suggest that gastric clusterin may function as a gut-derived peptide involved in the regulation of feeding through the gut-brain axis. [BMB Reports 2024; 57(3): 149-154].
Asunto(s)
Ingestión de Alimentos , Ghrelina , Ratones , Animales , Ghrelina/farmacología , Ingestión de Alimentos/fisiología , Clusterina/farmacología , Colecistoquinina/farmacología , Estómago , Conducta AlimentariaRESUMEN
Psoriasis, a chronic and systemic inflammatory disorder characterized by activation of the interleukin (IL)-23/IL-17 axis, may be associated with the intestinal microbiota through the so-called "gut-skin axis." Clusterin is a glycoprotein ubiquitously distributed in mammalian tissues; however, its role in psoriasis is unclear. Therefore, we evaluated the role of clusterin in psoriatic skin inflammation, systemic inflammation, and colitis using a murine model of IMQ-induced psoriasis. In IMQ-treated clusterin-knockout (clusterin-/-) mice, the expressions of inflammatory cytokines in clusterin-silenced human keratinocytes and intestinal microbial composition were analyzed. We also examined clusterin expression in the skin tissues of patients with psoriasis. IMQ-induced psoriatic skin inflammation is suppressed in clusterin-/- mice. Long-term administration of IMQ induced systemic inflammation and colitis; however, both were alleviated by the genetic deletion of clusterin. Genetic silencing of clusterin in human keratinocytes inhibited the production of inflammatory cytokines involved in the initiation and progression of psoriasis. The composition of the intestinal microbiota in IMQ-treated clusterin-/- and wild-type mice was different. Genetic deletion of clusterin suppressed the increase in the Firmicutes/Bacteroidetes (F/B) ratio. Skin tissues of patients with psoriasis showed high clusterin expression. In conclusion, inhibition of clusterin decreased psoriatic skin inflammation, systemic inflammation, colitis, and altered the F/B ratio in an IMQ-induced murine psoriasis model.
Asunto(s)
Colitis , Dermatitis , Microbioma Gastrointestinal , Psoriasis , Humanos , Animales , Ratones , Clusterina/genética , Psoriasis/inducido químicamente , Psoriasis/genética , Colitis/inducido químicamente , Colitis/genética , Inflamación , Bacteroidetes , Citocinas , Firmicutes , MamíferosRESUMEN
Adipocyte-derived leptin enters the brain to exert its anorexigenic action, yet its transport mechanism is poorly understood. Here we report that LRP1 (low-density lipoprotein receptor-related protein-1) mediates the transport of leptin across the blood-CSF barrier in Foxj1 expressing cells highly enriched at the choroid plexus (ChP), coupled with the short-form leptin receptor, and LRP1 deletion from ependymocytes and ChP cells leads to leptin resistance and hyperphagia, causing obesity. Thus, LRP1 in epithelial cells is a principal regulator of leptin transport in the brain.
RESUMEN
Complex nuclear magnetic resonance (NMR) signals of organic compounds containing multiple analogous substructures or mixtures pose a significant challenge to structural identification, thus resulting in frequent misassignment of structures. The GEMSTONE method, a single-scan technique that selectively excites a specific proton signal among the crowded NMR signals, was recently proposed as a solution. However, its extension to the polarization transfer method for heteronuclear spin systems was unsuccessful. Herein, we present an extension method that addresses the altered heteronuclear polarization transfer efficiency and enables the acquisition of ultraselective 13 C and 1 H-13 C correlation NMR subspectra with hertz-level signal selectivity in both dimensions. We demonstrate the effectiveness of this technique in the structural analysis of a chromopeptide pharmaceutical and a diastereomeric mixture of a fungicide.
RESUMEN
Nicotinamide adenine dinucleotide (NAD+) is an essential cofactor of critical enzymes including protein deacetylase sirtuins/SIRTs and its levels in mammalian cells rely on the nicotinamide phosphoribosyltransferase (NAMPT)-mediated salvage pathway. Intracellular NAMPT (iNAMPT) is secreted and found in the blood as extracellular NAMPT (eNAMPT). In the liver, the iNAMPT-NAD+ axis oscillates in a circadian manner and regulates the cellular clockwork. Here we show that the hypothalamic NAD+ levels show a distinct circadian fluctuation with a nocturnal rise in lean mice. This rhythm is in phase with that of plasma eNAMPT levels but not with that of hypothalamic iNAMPT levels. Chemical and genetic blockade of eNAMPT profoundly inhibit the nighttime elevations in hypothalamic NAD+ levels as well as those in locomotor activity (LMA) and energy expenditure (EE). Conversely, elevation of plasma eNAMPT by NAMPT administration increases hypothalamic NAD+ levels and stimulates LMA and EE via the hypothalamic NAD+-SIRT-FOXO1-melanocortin pathway. Notably, obese animals display a markedly blunted circadian oscillation in blood eNAMPT-hypothalamic NAD+-FOXO1 axis as well as LMA and EE. Our findings indicate that the eNAMPT regulation of hypothalamic NAD+ biosynthesis underlies circadian physiology and that this system can be significantly disrupted by obesity.
Asunto(s)
Citocinas , NAD , Ratones , Animales , NAD/metabolismo , Citocinas/metabolismo , Hígado/metabolismo , Metabolismo Energético , Ritmo Circadiano , Locomoción , Mamíferos/metabolismoRESUMEN
To investigate the effect of a side chain on the electrical properties of a conjugated polymer (CP), we designed two different CPs containing alkyl and ethylene glycol (EG) derivatives as side chains on the same conjugated backbone with an electron donor-acceptor (D-A) type chain configuration. PTQ-T with an alkyl side chain showed typical p-type semiconducting properties, whereas PTQ-TEG with an EG-based side chain exhibited electrically conductive behavior. Both CPs generated radical species owing to their strong D-A type conjugated structure; however, the spin density was much greater in PTQ-TEG. X-ray photoelectron spectroscopy analysis revealed that the O atoms of the EG-based side chains in PTQ-TEG were intercalated with the conjugated backbone and increased the carrier density. Upon application to a field-effect transistor sensor for PTQ-T and resistive sensor for PTQ-TEG, PTQ-TEG exhibited a better NO2 detection capability with faster signal recovery characteristics than PTQ-T. Compared with the relatively rigid alkyl side chains of PTQ-T, the flexible EG-based side chains in PTQ-TEG have a higher potential to enlarge the free volume as well as improve NO2-affinity, which promotes the diffusion of NO2 in and out of the PTQ-TEG film, and ultimately resulting in better NO2 detection capabilities.
RESUMEN
In this study, we propose dynamic model update methods for the adaptive classification model of text streams in a distributed learning environment. In particular, we present two model update strategies: (1) the entire model update and (2) the partial model update. The former aims to maximize the model accuracy by periodically rebuilding the model based on the accumulated datasets including recent datasets. Its learning time incrementally increases as the datasets increase, but we alleviate the learning overhead by the distributed learning of the model. The latter fine-tunes the model only with a limited number of recent datasets, noting that the data streams are dependent on a recent event. Therefore, it accelerates the learning speed while maintaining a certain level of accuracy. To verify the proposed update strategies, we extensively apply them to not only fully trainable language models based on CNN, RNN, and Bi-LSTM, but also a pre-trained embedding model based on BERT. Through extensive experiments using two real tweet streaming datasets, we show that the entire model update improves the classification accuracy of the pre-trained offline model; the partial model update also improves it, which shows comparable accuracy with the entire model update, while significantly increasing the learning speed. We also validate the scalability of the proposed distributed learning architecture by showing that the model learning and inference time decrease as the number of worker nodes increases.
Asunto(s)
Lenguaje , AprendizajeRESUMEN
PURPOSE: We aimed to evaluate the performance of a fully automated quantitative software in detecting interstitial lung abnormalities (ILA) according to the Fleischner Society guidelines on routine chest CT compared with radiologists' visual analysis. METHOD: This retrospective single-centre study included participants with ILA findings and 1:2 matched controls who underwent routine chest CT using various CT protocols for health screening. Two thoracic radiologists independently reviewed the CT images using the Fleischner Society guidelines. We developed a fully automated quantitative tool for detecting ILA by modifying deep learning-based quantification of interstitial lung disease and evaluated its performance using the radiologists' consensus for ILA as a reference standard. RESULTS: A total of 336 participants (mean age, 70.5 ± 6.1 years; M:F = 282:54) were included. Inter-reader agreements were substantial for the presence of ILA (weighted κ, 0.74) and fair for its subtypes (weighted κ, 0.38). The quantification system for identifying ILA using a threshold of 5 % in at least one zone showed 67.6 % sensitivity, 93.3 % specificity, and 90.5 % accuracy. Eight of 20 (40 %) false positives identified by the system were underestimated by readers for ILA extent. Contrast-enhancement in a certain vendor and suboptimal inspiration caused a true false-positive on the system (all P < 0.05). The best cut-off value of abnormality extent detecting ILA on the system was 3.6 % (sensitivity, 84.8 %; specificity 92.4 %). CONCLUSIONS: Inter-reader agreement was substantial for ILA but only fair for its subtypes. Applying an automated quantification system in routine clinical practice may aid the objective identification of ILA.
Asunto(s)
Enfermedades Pulmonares Intersticiales , Anomalías del Sistema Respiratorio , Humanos , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Radiólogos , Pulmón/diagnóstico por imagenRESUMEN
Low levels of mitochondrial stress are beneficial for organismal health and survival through a process known as mitohormesis. Mitohormetic responses occur during or after exercise and may mediate some salutary effects of exercise on metabolism. Exercise-related mitohormesis involves reactive oxygen species production, mitochondrial unfolded protein response (UPRmt), and release of mitochondria-derived peptides (MDPs). MDPs are a group of small peptides encoded by mitochondrial DNA with beneficial metabolic effects. Among MDPs, mitochondrial ORF of the 12S rRNA type-c (MOTS-c) is the most associated with exercise. MOTS-c expression levels increase in skeletal muscles, systemic circulation, and the hypothalamus upon exercise. Systemic MOTS-c administration increases exercise performance by boosting skeletal muscle stress responses and by enhancing metabolic adaptation to exercise. Exogenous MOTS-c also stimulates thermogenesis in subcutaneous white adipose tissues, thereby enhancing energy expenditure and contributing to the anti-obesity effects of exercise training. This review briefly summarizes the mitohormetic mechanisms of exercise with an emphasis on MOTS-c.
Asunto(s)
Mitocondrias , ARN Ribosómico , Ejercicio Físico , Factores de TranscripciónRESUMEN
A primary cilium, a hair-like protrusion of the plasma membrane, is a pivotal organelle for sensing external environmental signals and transducing intracellular signaling. An interesting linkage between cilia and obesity has been revealed by studies of the human genetic ciliopathies Bardet-Biedl syndrome and Alström syndrome, in which obesity is a principal manifestation. Mouse models of cell type-specific cilia dysgenesis have subsequently demonstrated that ciliary defects restricted to specific hypothalamic neurons are sufficient to induce obesity and hyperphagia. A potential mechanism underlying hypothalamic neuron cilia-related obesity is impaired ciliary localization of G protein-coupled receptors involved in the regulation of appetite and energy metabolism. A well-studied example of this is melanocortin 4 receptor (MC4R), mutations in which are the most common cause of human monogenic obesity. In the paraventricular hypothalamus neurons, a blockade of ciliary trafficking of MC4R as well as its downstream ciliary signaling leads to hyperphagia and weight gain. Another potential mechanism is reduced leptin signaling in hypothalamic neurons with defective cilia. Leptin receptors traffic to the periciliary area upon leptin stimulation. Moreover, defects in cilia formation hamper leptin signaling and actions in both developing and differentiated hypothalamic neurons. The list of obesity-linked ciliary proteins is expending and this supports a tight association between cilia and obesity. This article provides a brief review on the mechanism of how ciliary defects in hypothalamic neurons facilitate obesity.