Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Biol ; 11(9): e1001657, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24068890

RESUMEN

Pruning that selectively eliminates unnecessary axons/dendrites is crucial for sculpting the nervous system during development. During Drosophila metamorphosis, dendrite arborization neurons, ddaCs, selectively prune their larval dendrites in response to the steroid hormone ecdysone, whereas mushroom body γ neurons specifically eliminate their axon branches within dorsal and medial lobes. However, it is unknown which E3 ligase directs these two modes of pruning. Here, we identified a conserved SCF E3 ubiquitin ligase that plays a critical role in pruning of both ddaC dendrites and mushroom body γ axons. The SCF E3 ligase consists of four core components Cullin1/Roc1a/SkpA/Slimb and promotes ddaC dendrite pruning downstream of EcR-B1 and Sox14, but independently of Mical. Moreover, we demonstrate that the Cullin1-based E3 ligase facilitates ddaC dendrite pruning primarily through inactivation of the InR/PI3K/TOR pathway. We show that the F-box protein Slimb forms a complex with Akt, an activator of the InR/PI3K/TOR pathway, and promotes Akt ubiquitination. Activation of the InR/PI3K/TOR pathway is sufficient to inhibit ddaC dendrite pruning. Thus, our findings provide a novel link between the E3 ligase and the InR/PI3K/TOR pathway during dendrite pruning.


Asunto(s)
Proteínas Cullin/metabolismo , Proteínas de Drosophila/metabolismo , Sistema Nervioso/embriología , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Tirosina Quinasas Receptoras/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Animales , Proteínas de Unión al Calcio , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cullin/genética , Proteínas de Unión al ADN/genética , Dendritas/metabolismo , Drosophila/embriología , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Ecdisona/metabolismo , Regulación del Desarrollo de la Expresión Génica , Metamorfosis Biológica , Cuerpos Pedunculados/inervación , Neuronas/metabolismo , Proteínas Nucleares , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Ligasas SKP Cullina F-box/genética , Proteínas Ligasas SKP Cullina F-box/metabolismo , Factores de Transcripción SOXB2/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
2.
Neuron ; 72(1): 86-100, 2011 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-21982371

RESUMEN

Pruning that selectively removes unnecessary axons/dendrites is crucial for sculpting neural circuits during development. During Drosophila metamorphosis, dendritic arborization sensory neurons, ddaCs, selectively prune their larval dendrites in response to the steroid hormone ecdysone. However, it is unknown whether epigenetic factors are involved in dendrite pruning. Here, we analyzed 81 epigenetic factors, from which a Brahma (Brm)-containing chromatin remodeler and a histone acetyltransferase CREB-binding protein (CBP) were identified for their critical roles in initiating dendrite pruning. Brm and CBP specifically activate a key ecdysone response gene, sox14, but not EcR-B1. Furthermore, the HAT activity of CBP is important for sox14 expression and dendrite pruning. EcR-B1 associates with CBP in the presence of ecdysone, which is facilitated by Brm, resulting in local enrichment of an active chromatin mark H3K27Ac at the sox14 locus. Thus, specific intrinsic epigenetic factors cooperate with steroid hormones to activate selective transcriptional programs, thereby initiating neuronal remodeling.


Asunto(s)
Proteína de Unión a CREB/fisiología , Proteínas de Ciclo Celular/fisiología , Proteínas de Drosophila/fisiología , Drosophila/crecimiento & desarrollo , Ecdisona/fisiología , Epigénesis Genética/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Células Receptoras Sensoriales/citología , Transactivadores/fisiología , Animales , Dendritas/fisiología , Drosophila/genética , Proteínas de Drosophila/biosíntesis , Proteínas de Drosophila/metabolismo , Epigénesis Genética/genética , Regulación del Desarrollo de la Expresión Génica/genética , Histona Acetiltransferasas/metabolismo , Metamorfosis Biológica/genética , Metamorfosis Biológica/fisiología , Receptores de Esteroides/biosíntesis , Receptores de Esteroides/fisiología , Factores de Transcripción SOXB2/biosíntesis , Factores de Transcripción SOXB2/metabolismo , Células Receptoras Sensoriales/metabolismo
3.
Development ; 138(23): 5087-97, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22031542

RESUMEN

Stem cell self-renewal is controlled by concerted actions of niche signals and intrinsic factors in a variety of systems. In the Drosophila ovary, germline stem cells (GSCs) in the niche continuously self-renew and generate differentiated germ cells that interact physically with escort cells (ECs). It has been proposed that escort stem cells (ESCs), which directly contact GSCs, generate differentiated ECs to maintain the EC population. However, it remains unclear whether the differentiation status of germ cells affects EC behavior and how the interaction between ECs and germ cells is regulated. In this study, we have found that ECs can undergo slow cell turnover regardless of their positions, and the lost cells are replenished by their neighboring ECs via self-duplication rather than via stem cells. ECs extend elaborate cellular processes that exhibit extensive interactions with differentiated germ cells. Interestingly, long cellular processes of ECs are absent when GSC progeny fail to differentiate, suggesting that differentiated germ cells are required for the formation or maintenance of EC cellular processes. Disruption of Rho functions leads to the disruption of long EC cellular processes and the accumulation of ill-differentiated single germ cells by increasing BMP signaling activity outside the GSC niche, and also causes gradual EC loss. Therefore, our findings indicate that ECs interact extensively with differentiated germ cells through their elaborate cellular processes and control proper germ cell differentiation. Here, we propose that ECs form a niche that controls GSC lineage differentiation and is maintained by a non-stem cell mechanism.


Asunto(s)
Diferenciación Celular/fisiología , Drosophila/citología , Células Germinativas/fisiología , Ovario/citología , Células Madre/fisiología , Animales , Proteínas Morfogenéticas Óseas/metabolismo , Bromodesoxiuridina , Proteínas de Drosophila/metabolismo , Femenino , Células Germinativas/citología , Inmunohistoquímica , Proteínas de la Membrana/metabolismo , Interferencia de ARN , Transducción de Señal/fisiología , Células Madre/citología
4.
Nat Neurosci ; 12(12): 1497-505, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19881505

RESUMEN

Pruning that selectively eliminates neuronal processes is crucial for the refinement of neural circuits during development. In Drosophila, the class IV dendritic arborization neuron (ddaC) undergoes pruning to remove its larval dendrites during metamorphosis. We identified Sox14 as a transcription factor that was necessary and sufficient to mediate dendrite severing during pruning in response to ecdysone signaling. We found that Sox14 mediated dendrite pruning by directly regulating the expression of the target gene mical. mical Encodes a large cytosolic protein with multiple domains that are known to associate with cytoskeletal components. mical Mutants had marked severing defects during dendrite pruning that were similar to those of sox14 mutants. Overexpression of Mical could significantly rescue pruning defects in sox14 mutants, suggesting that Mical is a major downstream target of Sox14 during pruning. Thus, our findings indicate that a previously unknown pathway composed of Sox14 and its cytoskeletal target Mical governs dendrite severing.


Asunto(s)
Proteínas de Unión al ADN/genética , Dendritas/fisiología , Proteínas de Drosophila/genética , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción SOXB2/genética , Animales , Citoesqueleto/fisiología , Citosol/fisiología , Proteínas de Unión al ADN/metabolismo , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/metabolismo , Ecdisona/fisiología , Metamorfosis Biológica/fisiología , Cuerpos Pedunculados/citología , Cuerpos Pedunculados/crecimiento & desarrollo , Cuerpos Pedunculados/fisiología , Mutagénesis/fisiología , Neuronas/fisiología , Neuronas/ultraestructura , Receptores de Esteroides/genética , Receptores de Esteroides/metabolismo , Factores de Transcripción SOXB2/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/fisiología
5.
Cell Stem Cell ; 2(1): 39-49, 2008 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-18371420

RESUMEN

Rapid progress has recently been made regarding how the niche controls stem cell function, but little is yet known about how stem cells in the same niche interact with one another. In this study, we show that differentiation-defective Drosophila ovarian germline stem cells (GSCs) can outcompete normal ones for niche occupancy in a cadherin-dependent manner. The differentiation-defective bam or bgcn mutant GSCs invade the niche space of neighboring wild-type GSCs and gradually push them out of the niche by upregulating E-cadherin expression. Furthermore, the bam/bgcn-mediated GSC competition requires E-cadherin and normal GSC division, but not the self-renewal-promoting BMP niche signal, while different E-cadherin levels can sufficiently stimulate GSC competition. Therefore, we propose that GSCs have a competitive relationship for niche occupancy, which may serve as a quality control mechanism to ensure that accidentally differentiated stem cells are rapidly removed from the niche and replaced by functional ones.


Asunto(s)
Comunicación Celular , Diferenciación Celular/genética , Drosophila melanogaster , Nicho de Células Madre/fisiología , Células Madre/fisiología , Animales , Cadherinas/fisiología , Diferenciación Celular/fisiología , Proliferación Celular , Proteínas de Drosophila/fisiología , Femenino , Genes de Insecto/fisiología , Masculino , Ovario/citología , Ovario/fisiología , Transducción de Señal , Nicho de Células Madre/citología , Células Madre/patología
6.
Development ; 134(6): 1071-80, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17287246

RESUMEN

Stem cells, which can self-renew and generate differentiated cells, have been shown to be controlled by surrounding microenvironments or niches in several adult tissues. However, it remains largely unknown what constitutes a functional niche and how niche formation is controlled. In the Drosophila ovary, germline stem cells (GSCs), which are adjacent to cap cells and two other cell types, have been shown to be maintained in the niche. In this study, we show that Notch signaling controls formation and maintenance of the GSC niche and that cap cells help determine the niche size in the Drosophila ovary. Expanded Notch activation causes the formation of more cap cells and bigger niches, which support more GSCs, whereas compromising Notch signaling during niche formation decreases the cap cell number and niche size and consequently the GSC number. Furthermore, the niches located away from their normal location can still sufficiently sustain GSC self-renewal by maintaining high local BMP signaling and repressing bam as in normal GSCs. Finally, loss of Notch function in adults results in rapid loss of the GSC niche, including cap cells and thus GSCs. Our results indicate that Notch signaling is important for formation and maintenance of the GSC niche, and that cap cells help determine niche size and function.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila/crecimiento & desarrollo , Oogénesis , Ovario/crecimiento & desarrollo , Óvulo/crecimiento & desarrollo , Receptores Notch/fisiología , Animales , División Celular , Drosophila/citología , Drosophila/genética , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Femenino , Células Germinativas/fisiología , Oogénesis/genética , Ovario/citología , Ovario/metabolismo , Óvulo/citología , Óvulo/metabolismo , Receptores Notch/análisis , Receptores Notch/genética , Transducción de Señal , Células Madre/citología , Células Madre/metabolismo , Células Madre/fisiología
7.
Cell Res ; 17(1): 15-25, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17199109

RESUMEN

Only a small number of cells in adult tissues (the stem cells) possess the ability to self-renew at every cell division, while producing differentiating daughter cells to maintain tissue homeostasis for an organism's lifetime. The Drosophila ovary harbors three different types of stem cell populations (germline stem cell (GSC), somatic stem cell (SSC) and escort stem cell (ESC)) located in a simple anatomical structure known as germarium, rendering it one of the best model systems for studying stem cell biology due to reliable stem cell identification and available sophisticated genetic tools for manipulating gene functions. Particularly, the niche for the GSC is among the first and best studied ones, and studies on the GSC and its niche have made many unique contributions to a better understanding of relationships between stem cells and their niche. So far, both the GSC and the SSC have been shown to be regulated by extrinsic factors originating from their niche and intrinsic factors functioning within. Multiple signaling pathways are required for controlling GSC and SSC self-renewal and differentiation, which provide unique opportunities to investigate how multiple signals from the niche are interpreted in the stem cell. Since the Drosophila ovary contains three types of stem cells, it also provides outstanding opportunities to study how multiple stem cells in a given tissue work collaboratively to contribute to tissue function and maintenance. This review highlights recent major advances in studying Drosophila ovarian stem cells and also discusses future directions and challenges.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Ovario/citología , Ovario/fisiología , Células Madre/fisiología , Animales , Femenino
8.
Dev Cell ; 9(5): 651-62, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16256740

RESUMEN

BMP signaling is essential for promoting self-renewal of mouse embryonic stem cells and Drosophila germline stem cells and for repressing stem cell proliferation in the mouse intestine and skin. However, it remains unknown whether BMP signaling can promote self-renewal of adult somatic stem cells. In this study, we show that BMP signaling is necessary and sufficient for promoting self-renewal and proliferation of somatic stem cells (SSCs) in the Drosophila ovary. BMP signaling is required in SSCs to directly control their maintenance and division, but is dispensable for proliferation of their differentiated progeny. Furthermore, BMP signaling is required to control SSC self-renewal, but not survival. Moreover, constitutive BMP signaling prolongs the SSC lifespan. Therefore, our study clearly demonstrates that BMP signaling directly promotes SSC self-renewal and proliferation in the Drosophila ovary. Our work further suggests that BMP signaling could promote self-renewal of adult stem cells in other systems.


Asunto(s)
Proteínas Morfogenéticas Óseas/fisiología , Drosophila/metabolismo , Ovario/metabolismo , Transducción de Señal/fisiología , Células Madre/metabolismo , Animales , Proteínas Morfogenéticas Óseas/genética , Diferenciación Celular/fisiología , División Celular/fisiología , Proliferación Celular , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/deficiencia , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Longevidad/fisiología , Modelos Biológicos , Ovario/citología , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , Proteína Wnt1
9.
Curr Opin Genet Dev ; 15(4): 381-7, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-15950455

RESUMEN

Germline and somatic stem cells are distinct types of stem cells that are dedicated to reproduction and somatic tissue homeostasis, respectively. Extensive studies on these two stem cell types in different organisms over the past few years have revealed some commonalities in the mechanisms controlling their self-renewal and differentiation. Furthermore, germline or somatic cells in various organisms and sexes also exhibit their own unique ways of regulating stem cell function. By understanding these similarities and differences we might gain a better insight into how stem cells are regulated in general and how germline and somatic stem cell types are regulated differently.


Asunto(s)
Células Germinativas/fisiología , Células Madre/fisiología , Animales , Proteínas Morfogenéticas Óseas/fisiología , Proteínas de Ciclo Celular/fisiología , Diferenciación Celular/fisiología , División Celular/fisiología , Células Germinativas/citología , Modelos Biológicos , Transducción de Señal/fisiología , Células Madre/citología
10.
Dev Dyn ; 232(3): 775-90, 2005 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-15704119

RESUMEN

Stem cells have the unique potential to self-renew and to supply differentiated cells that replenish lost cells throughout an organism's lifetime. This unique property makes stem cells powerful therapeutic tools for future regenerative medicine. However, the molecular mechanisms of stem cell regulation are still poorly understood in many stem cell systems. Stem cell function has been shown recently to be controlled by concerted actions of extrinsic signals from its regulatory niche and intrinsic factors inside the stem cell. Stem cells in the Drosophila reproductive systems provide excellent models to understand the fundamental mechanisms underlying stem cell regulation, including the relationships between stem cells and their niches. Within the past few years, much progress in understanding stem cells in Drosophila has been made, and the knowledge gained from studying these stem cells greatly advances our understanding of stem cells in other systems, including humans. In this review, we summarize the recent progress and describe future challenges in understanding the molecular mechanisms controlling stem cell self-renewal, division, and differentiation in the Drosophila reproductive systems.


Asunto(s)
Drosophila/genética , Ovario/metabolismo , Células Madre/fisiología , Testículo/metabolismo , Animales , Diferenciación Celular , División Celular , Drosophila/metabolismo , Femenino , Humanos , Masculino , Modelos Biológicos , Ovario/citología , Transducción de Señal , Células Madre/citología , Testículo/citología
11.
Mol Cell Neurosci ; 27(3): 215-26, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15519237

RESUMEN

N-methyl-D-aspartate receptor (NMDAR) composition in granule cells changes characteristically during cerebellar development. To analyze the importance of NR2B replacement by NR2C and NR2A subunits until the end of the first month of age, we generated mice with lasting NR2B expression but deficiency for NR2C (NR2C-2B mice). Mutant phenotype was different from NR2C knock-out mice as loss of granule cells and morphological changes in NR2C/2B cerebellar architecture were already evident from the second postnatal week. Increased NR2B subunit levels led also to a gradual down-regulation of cerebellar NR2A levels, preceding the development of motor impairment in adult animals. Therefore, cerebellar NR2A is important for proper motor coordination and cannot be replaced by long-term expression of NR2B. Consequently, the physiological exchange of NMDA receptor subunits during cerebellar granule cell maturation is important for accurate postnatal development and function.


Asunto(s)
Cerebelo/citología , Cerebelo/metabolismo , Regulación hacia Abajo/fisiología , Trastornos de la Destreza Motora/metabolismo , Receptores de N-Metil-D-Aspartato/biosíntesis , Animales , Cerebelo/crecimiento & desarrollo , Femenino , Regulación de la Expresión Génica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de N-Metil-D-Aspartato/genética , Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA