RESUMEN
Chimeric antigen receptor (CAR) T-cell therapy produces high response rates in refractory B-cell non-Hodgkin lymphoma, but long-term data are minimal to date. In this study, we present long-term follow-up of a pilot trial testing a CD20-targeting third-generation CAR in patients with relapsed B-cell lymphomas following cyclophosphamide-only lymphodepletion. Two of the three patients in the trial, with mantle cell lymphoma and follicular lymphoma, had remissions lasting more than 7 years, though they ultimately relapsed. The absence of B-cell aplasia in both patients suggested a lack of functional CAR T-cell persistence, leading to the hypothesis that endogenous immune responses were responsible for these long-term remissions. Correlative immunologic analyses supported this hypothesis, with evidence of new humoral and cellular antitumor immune responses proximal to clinical response time points. Collectively, our results suggest that CAR T-cell therapy may facilitate epitope spreading and endogenous immune response formation in lymphomas. Significance: Two of three patients treated with CD20-targeted CAR T-cell therapy had long-term remissions, with evidence of endogenous antitumor immune response formation. Further investigation is warranted to develop conditions that promote epitope spreading in lymphomas.
Asunto(s)
Antígenos CD20 , Inmunoterapia Adoptiva , Receptores Quiméricos de Antígenos , Inducción de Remisión , Humanos , Antígenos CD20/inmunología , Receptores Quiméricos de Antígenos/inmunología , Inmunoterapia Adoptiva/métodos , Persona de Mediana Edad , Masculino , Femenino , Anciano , Linfoma Folicular/terapia , Linfoma Folicular/inmunología , Proyectos Piloto , Linfocitos T/inmunología , Linfocitos T/trasplante , Resultado del TratamientoRESUMEN
Background: Limited data are available on the concordance between multiparameter flow cytometry (MFC) and next-generation sequencing (NGS) for minimal residual disease (MRD) detection in a large trial for multiple myeloma (MM) patients. Methods: MRD was explored in the FORTE trial for transplant-eligible MM patients randomised to three carfilzomib-based induction-intensification-consolidation treatments and carfilzomib-lenalidomide (KR) vs R maintenance. MRD was assessed by 8-colour 2nd-generation flow cytometry in patients with ≥very good partial response before maintenance. NGS was performed in case of suspected complete response (CR) in a correlative subanalysis. Biological/prognostic concordance between MFC and NGS, conversion to MRD negativity during maintenance, and 1-year/2-year sustained MRD negativity were explored. Findings: Between September 28, 2015 and December 22, 2021, 2020 samples were available for MFC and 728 for the simultaneous MFC/NGS correlation in the "suspected CR population". Median follow-up was 62 months. Biological agreement was 87% at the 10-5 and 83% at the 10-6 cut-offs. A remarkable prognostic concordance was observed: hazard ratios in MFC-MRD and NGS-MRD-negative vs -positive patients were 0.29 and 0.27 for progression-free survival (PFS) and 0.35 and 0.31 for overall survival, respectively (p < 0.05). During maintenance, 4-year PFS was 91% and 97% in 1-year sustained MFC-MRD-negative and NGS-MRD-negative patients (10-5), respectively, and 99% and 97% in 2-year sustained MFC-MRD-negative and NGS-MRD-negative patients, regardless of treatment received. The conversion rate from pre-maintenance MRD positivity to negativity during maintenance was significantly higher with KR vs R both by MFC (46% vs 30%, p = 0.046) and NGS (56% vs 30%, p = 0.046). Interpretation: The significant biological/clinical concordance between MFC and NGS at the same sensitivity suggests their possible use in the evaluation of one of the currently strongest predictors of outcome. Funding: Amgen, Celgene/Bristol Myers Squibb, Multiple Myeloma Research Foundation.
RESUMEN
Minimal residual disease (MRD) assays allow response assessment in patients with multiple myeloma (MM), and negativity is associated with improved survival outcomes. The role of highly sensitive next generation sequencing (NGS) MRD in combination with functional imaging remains to be validated. We performed a retrospective analysis on MM patients who underwent frontline autologous stem cell transplant (ASCT). Patients were evaluated at day 100 post-ASCT with NGS-MRD and positron emission tomography (PET-CT). Patients with ≥ 2 MRD measurements were included in a secondary analysis for sequential measurements. 186 patients were included. At day 100, 45 (24.2%) patients achieved MRD negativity at a sensitivity threshold of 10-6. MRD negativity was the most predictive factor for longer time to next treatment (TTNT). Negativity rates did not differ according to MM subtype, R-ISS Stage nor cytogenetic risk. PET-CT and MRD had poor agreement, with high rates of PET-CT negativity in MRD-positive patients. Patients with sustained MRD negativity had longer TTNT, regardless of baseline risk characteristics. Our results show that the ability to measure deeper and sustainable responses distinguishes patients with better outcomes. Achieving MRD negativity was the strongest prognostic marker and could help guide therapy-related decisions and serve as a response marker for clinical trials.
Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/diagnóstico por imagen , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Tomografía Computarizada por Tomografía de Emisión de Positrones , Secuenciación de Nucleótidos de Alto Rendimiento , Neoplasia Residual , Estudios Retrospectivos , Tomografía de Emisión de PositronesRESUMEN
Big data in healthcare can enable unprecedented understanding of diseases and their treatment, particularly in oncology. These data may include electronic health records, medical imaging, genomic sequencing, payor records, and data from pharmaceutical research, wearables, and medical devices. The ability to combine datasets and use data across many analyses is critical to the successful use of big data and is a concern for those who generate and use the data. Interoperability and data quality continue to be major challenges when working with different healthcare datasets. Mapping terminology across datasets, missing and incorrect data, and varying data structures make combining data an onerous and largely manual undertaking. Data privacy is another concern addressed by the Health Insurance Portability and Accountability Act, the Common Rule, and the General Data Protection Regulation. The use of big data is now included in the planning and activities of the FDA and the European Medicines Agency. The willingness of organizations to share data in a precompetitive fashion, agreements on data quality standards, and institution of universal and practical tenets on data privacy will be crucial to fully realizing the potential for big data in medicine.
Asunto(s)
Macrodatos , Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/terapia , Medicina de Precisión , Almacenamiento y Recuperación de la InformaciónRESUMEN
The analysis of big healthcare data has enormous potential as a tool for advancing oncology drug development and patient treatment, particularly in the context of precision medicine. However, there are challenges in organizing, sharing, integrating, and making these data readily accessible to the research community. This review presents five case studies illustrating various successful approaches to addressing such challenges. These efforts are CancerLinQ, the American Association for Cancer Research Project GENIE, Project Data Sphere, the National Cancer Institute Genomic Data Commons, and the Veterans Health Administration Clinical Data Initiative. Critical factors in the development of these systems include attention to the use of robust pipelines for data aggregation, common data models, data deidentification to enable multiple uses, integration of data collection into physician workflows, terminology standardization and attention to interoperability, extensive quality assurance and quality control activity, incorporation of multiple data types, and understanding how data resources can be best applied. By describing some of the emerging resources, we hope to inspire consideration of the secondary use of such data at the earliest possible step to ensure the proper sharing of data in order to generate insights that advance the understanding and the treatment of cancer.
Asunto(s)
Macrodatos , Neoplasias , Humanos , Estados Unidos/epidemiología , Neoplasias/genética , Neoplasias/terapia , Oncología Médica , Atención a la SaludRESUMEN
The development of novel agents has transformed the treatment paradigm for multiple myeloma, with minimal residual disease (MRD) negativity now achievable across the entire disease spectrum. Bone marrow-based technologies to assess MRD, including approaches using next-generation flow and next-generation sequencing, have provided real-time clinical tools for the sensitive detection and monitoring of MRD in patients with multiple myeloma. Complementary liquid biopsy-based assays are now quickly progressing with some, such as mass spectrometry methods, being very close to clinical use, while others utilizing nucleic acid-based technologies are still developing and will prove important to further our understanding of the biology of MRD. On the regulatory front, multiple retrospective individual patient and clinical trial level meta-analyses have already shown and will continue to assess the potential of MRD as a surrogate for patient outcome. Given all this progress, it is not surprising that a number of clinicians are now considering using MRD to inform real-world clinical care of patients across the spectrum from smoldering myeloma to relapsed refractory multiple myeloma, with each disease setting presenting key challenges and questions that will need to be addressed through clinical trials. The pace of advances in targeted and immune therapies in multiple myeloma is unprecedented, and novel MRD-driven biomarker strategies are essential to accelerate innovative clinical trials leading to regulatory approval of novel treatments and continued improvement in patient outcomes.
Asunto(s)
Mieloma Múltiple , Médula Ósea , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mieloma Múltiple/diagnóstico , Mieloma Múltiple/tratamiento farmacológico , Neoplasia Residual/diagnóstico , Estudios RetrospectivosRESUMEN
BACKGROUND: The clonoSEQ® Assay (Adaptive Biotechnologies Corporation, Seattle, USA) identifies and tracks unique disease-associated immunoglobulin (Ig) sequences by next-generation sequencing of IgH, IgK, and IgL rearrangements and IgH-BCL1/2 translocations in malignant B cells. Here, we describe studies to validate the analytical performance of the assay using patient samples and cell lines. METHODS: Sensitivity and specificity were established by defining the limit of detection (LoD), limit of quantitation (LoQ) and limit of blank (LoB) in genomic DNA (gDNA) from 66 patients with multiple myeloma (MM), acute lymphoblastic leukemia (ALL), or chronic lymphocytic leukemia (CLL), and three cell lines. Healthy donor gDNA was used as a diluent to contrive samples with specific DNA masses and malignant-cell frequencies. Precision was validated using a range of samples contrived from patient gDNA, healthy donor gDNA, and 9 cell lines to generate measurable residual disease (MRD) frequencies spanning clinically relevant thresholds. Linearity was determined using samples contrived from cell line gDNA spiked into healthy gDNA to generate 11 MRD frequencies for each DNA input, then confirmed using clinical samples. Quantitation accuracy was assessed by (1) comparing clonoSEQ and multiparametric flow cytometry (mpFC) measurements of ALL and MM cell lines diluted in healthy mononuclear cells, and (2) analyzing precision study data for bias between clonoSEQ MRD results in diluted gDNA and those expected from mpFC based on original, undiluted samples. Repeatability of nucleotide base calls was assessed via the assay's ability to recover malignant clonotype sequences across several replicates, process features, and MRD levels. RESULTS: LoD and LoQ were estimated at 1.903 cells and 2.390 malignant cells, respectively. LoB was zero in healthy donor gDNA. Precision ranged from 18% CV (coefficient of variation) at higher DNA inputs to 68% CV near the LoD. Variance component analysis showed MRD results were robust, with expected laboratory process variations contributing ≤3% CV. Linearity and accuracy were demonstrated for each disease across orders of magnitude of clonal frequencies. Nucleotide sequence error rates were extremely low. CONCLUSIONS: These studies validate the analytical performance of the clonoSEQ Assay and demonstrate its potential as a highly sensitive diagnostic tool for selected lymphoid malignancies.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/instrumentación , Leucemia Linfocítica Crónica de Células B/diagnóstico , Mieloma Múltiple/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Juego de Reactivos para Diagnóstico , Médula Ósea/patología , Ciclina D1/genética , Reordenamiento Génico , Humanos , Cadenas Pesadas de Inmunoglobulina/genética , Cadenas lambda de Inmunoglobulina/genética , Inmunoglobulinas/genética , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/terapia , Límite de Detección , Mieloma Múltiple/sangre , Mieloma Múltiple/genética , Mieloma Múltiple/terapia , Neoplasia Residual , Leucemia-Linfoma Linfoblástico de Células Precursoras/sangre , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Proteínas Proto-Oncogénicas c-bcl-2/genética , Translocación GenéticaRESUMEN
Mycosis fungoides (MF), the most common cutaneous T cell lymphoma (CTCL) is a malignancy of skin-tropic memory T cells. Most MF cases present as early stage (stage I A/B, limited to the skin), and these patients typically have a chronic, indolent clinical course. However, a small subset of early-stage cases develop progressive and fatal disease. Because outcomes can be so different, early identification of this high-risk population is an urgent unmet clinical need. We evaluated the use of next-generation high-throughput DNA sequencing of the T cell receptor ß gene (TCRB) in lesional skin biopsies to predict progression and survival in a discovery cohort of 208 patients with CTCL (177 with MF) from a 15-year longitudinal observational clinical study. We compared these data to the results in an independent validation cohort of 101 CTCL patients (87 with MF). The tumor clone frequency (TCF) in lesional skin, measured by high-throughput sequencing of the TCRB gene, was an independent prognostic factor of both progression-free and overall survival in patients with CTCL and MF in particular. In early-stage patients, a TCF of >25% in the skin was a stronger predictor of progression than any other established prognostic factor (stage IB versus IA, presence of plaques, high blood lactate dehydrogenase concentration, large-cell transformation, or age). The TCF therefore may accurately predict disease progression in early-stage MF. Early identification of patients at high risk for progression could help identify candidates who may benefit from allogeneic hematopoietic stem cell transplantation before their disease becomes treatment-refractory.
Asunto(s)
Genes Codificadores de la Cadena beta de los Receptores de Linfocito T , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Micosis Fungoide/genética , Micosis Fungoide/inmunología , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Microambiente Celular , Células Clonales , Exoma/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Linfoma Cutáneo de Células T/genética , Linfoma Cutáneo de Células T/inmunología , Linfoma Cutáneo de Células T/patología , Masculino , Persona de Mediana Edad , Análisis Multivariante , Micosis Fungoide/patología , Pronóstico , Supervivencia sin Progresión , Piel/patología , Neoplasias Cutáneas/patologíaRESUMEN
In psoriasis, an IL-17-mediated inflammatory skin disease, skin lesions resolve with therapy, but often recur in the same locations when therapy is discontinued. We propose that residual T cell populations in resolved psoriatic lesions represent the pathogenic T cells of origin in this disease. Utilizing high-throughput screening (HTS) of the T cell receptor (TCR) and immunostaining, we found that clinically resolved psoriatic lesions contained oligoclonal populations of T cells that produced IL-17A in both resolved and active psoriatic lesions. Putative pathogenic clones preferentially utilized particular Vß and Vα subfamilies. We identified 15 TCRß and 4 TCRα antigen receptor sequences shared between psoriasis patients and not observed in healthy controls or other inflammatory skin conditions. To address the relative roles of αß versus γδ T cells in psoriasis, we carried out TCR/δ HTS. These studies demonstrated that the majority of T cells in psoriasis and healthy skin are αß T cells. γδ T cells made up 1% of T cells in active psoriasis, less than 1% in resolved psoriatic lesions, and less than 2% in healthy skin. All of the 70 most frequent putative pathogenic T cell clones were αß T cells. In summary, IL-17-producing αß T cell clones with psoriasis-specific antigen receptors exist in clinically resolved psoriatic skin lesions. These cells likely represent the disease-initiating pathogenic T cells in psoriasis, suggesting that lasting control of this disease will require suppression of these resident T cell populations.
Asunto(s)
Psoriasis/inmunología , Células Th17/fisiología , Secuencia de Aminoácidos , Antiinflamatorios no Esteroideos/uso terapéutico , Secuencia de Bases , Estudios de Casos y Controles , Células Cultivadas , Etanercept/uso terapéutico , Humanos , Interleucina-17/metabolismo , Psoriasis/patología , Psoriasis/terapia , Receptores de Antígenos de Linfocitos T/metabolismo , Piel/inmunología , Piel/patologíaRESUMEN
Treatment of myeloma has benefited from the introduction of more effective and better tolerated agents, improvements in supportive care, better understanding of disease biology, revision of diagnostic criteria, and new sensitive and specific tools for disease prognostication and management. Assessment of minimal residual disease (MRD) in response to therapy is one of these tools, as longer progression-free survival (PFS) is seen consistently among patients who have achieved MRD negativity. Current therapies lead to unprecedented frequency and depth of response, and next-generation flow and sequencing methods to measure MRD in bone marrow are in use and being developed with sensitivities in the range of 10-5 to 10-6 cells. These technologies may be combined with functional imaging to detect MRD outside of bone marrow. Moreover, immune profiling methods are being developed to better understand the immune environment in myeloma and response to immunomodulatory agents while methods for molecular profiling of myeloma cells and circulating DNA in blood are also emerging. With the continued development and standardization of these methodologies, MRD has high potential for use in gaining new drug approvals in myeloma. The FDA has outlined two pathways by which MRD could be qualified as a surrogate endpoint for clinical studies directed at obtaining accelerated approval for new myeloma drugs. Most importantly, better understanding of MRD should also contribute to better treatment monitoring. Potentially, MRD status could be used as a prognostic factor for making treatment decisions and for informing timing of therapeutic interventions. Clin Cancer Res; 23(15); 3980-93. ©2017 AACR.
Asunto(s)
ADN Tumoral Circulante/sangre , Mieloma Múltiple/sangre , Mieloma Múltiple/tratamiento farmacológico , Neoplasia Residual/sangre , Biomarcadores de Tumor/genética , Médula Ósea/efectos de los fármacos , Médula Ósea/patología , Supervivencia sin Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Mieloma Múltiple/complicaciones , Mieloma Múltiple/genética , Neoplasia Residual/inducido químicamente , Neoplasia Residual/genética , Selección de Paciente , PronósticoRESUMEN
The presence of eosinophils within the neutrophilic infiltrates of acute febrile neutrophilic dermatosis (Sweet syndrome) is documented in the literature. Here, the authors describe a case of eosinophil-rich acute febrile neutrophilic dermatosis in the setting of new onset enteropathy-associated T-cell lymphoma (EATL), type 1. Histopathologic evaluation of the skin biopsies demonstrated a mixed superficial perivascular and inflammatory infiltrate composed of neutrophils, lymphocytes, and abundant eosinophils. EATL, type 1 is an aggressive although rare primary intestinal lymphoma that may be associated with celiac disease. This lymphoma is associated with a poor prognosis due to treatment resistance or bowel perforation. To the authors' knowledge, Sweet syndrome has not been reported in a patient with EATL.
Asunto(s)
Linfoma de Células T Asociado a Enteropatía/complicaciones , Síndrome de Sweet/etiología , Anciano de 80 o más Años , Linfoma de Células T Asociado a Enteropatía/patología , Linfoma de Células T Asociado a Enteropatía/fisiopatología , Humanos , Masculino , Síndrome de Sweet/patología , Síndrome de Sweet/fisiopatologíaRESUMEN
Early diagnosis of cutaneous T cell lymphoma (CTCL) is difficult and takes on average 6 years after presentation, in part because the clinical appearance and histopathology of CTCL can resemble that of benign inflammatory skin diseases. Detection of a malignant T cell clone is critical in making the diagnosis of CTCL, but the T cell receptor γ (TCRγ) polymerase chain reaction (PCR) analysis in current clinical use detects clones in only a subset of patients. High-throughput TCR sequencing (HTS) detected T cell clones in 46 of 46 CTCL patients, was more sensitive and specific than TCRγ PCR, and successfully discriminated CTCL from benign inflammatory diseases. HTS also accurately assessed responses to therapy and facilitated diagnosis of disease recurrence. In patients with new skin lesions and no involvement of blood by flow cytometry, HTS demonstrated hematogenous spread of small numbers of malignant T cells. Analysis of CTCL TCRγ genes demonstrated that CTCL is a malignancy derived from mature T cells. There was a maximal T cell density in skin in benign inflammatory diseases that was exceeded in CTCL, suggesting that a niche of finite size may exist for benign T cells in skin. Last, immunostaining demonstrated that the malignant T cell clones in mycosis fungoides and leukemic CTCL localized to different anatomic compartments in the skin. In summary, HTS accurately diagnosed CTCL in all stages, discriminated CTCL from benign inflammatory skin diseases, and provided insights into the cell of origin and location of malignant CTCL cells in skin.
Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Linfoma Cutáneo de Células T/metabolismo , Linfoma Cutáneo de Células T/patología , Linfocitos T/metabolismo , Linfocitos T/patología , Humanos , Técnicas In Vitro , Receptores de Antígenos de Linfocitos T gamma-delta/genética , Enfermedades de la Piel/metabolismo , Enfermedades de la Piel/patologíaRESUMEN
Early-stage cutaneous T-cell lymphoma (CTCL) is a skin-limited lymphoma with no cure aside from stem cell transplantation. Twelve patients with stage IA-IIA CTCL were treated in a phase 1 trial of 0.03% and 0.06% topical resiquimod gel, a Toll-like receptor 7/8 agonist. Treated lesions significantly improved in 75% of patients and 30% had clearing of all treated lesions. Resiquimod also induced regression of untreated lesions. Ninety-two percent of patients had more than a 50% improvement in body surface area involvement by the modified Severity-Weighted Assessment Tool analysis and 2 patients experienced complete clearing of disease. Four of 5 patients with folliculotropic disease also improved significantly. Adverse effects were minor and largely skin limited. T-cell receptor sequencing and flow cytometry studies of T cells from treated lesions demonstrated decreased clonal malignant T cells in 90% of patients and complete eradication of malignant T cells in 30%. High responses were associated with recruitment and expansion of benign T-cell clones in treated skin, increased skin T-cell effector functions, and a trend toward increased natural killer cell functions. In patients with complete or near eradication of malignant T cells, residual clinical inflammation was associated with cytokine production by benign T cells. Fifty percent of patients had increased activation of circulating dendritic cells, consistent with a systemic response to therapy. In summary, topical resiquimod is safe and effective in early-stage CTCL and the first topical therapy to our knowledge that can induce clearance of untreated lesions and complete remissions in some patients. This trial was registered at www.clinicaltrials.gov as #NCT813320.
Asunto(s)
Antineoplásicos/uso terapéutico , Imidazoles/uso terapéutico , Linfoma Cutáneo de Células T/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Piel/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Administración Tópica , Adulto , Anciano , Antineoplásicos/administración & dosificación , Femenino , Humanos , Imidazoles/administración & dosificación , Linfoma Cutáneo de Células T/inmunología , Linfoma Cutáneo de Células T/patología , Masculino , Persona de Mediana Edad , Piel/inmunología , Piel/patología , Neoplasias Cutáneas/inmunología , Neoplasias Cutáneas/patología , Linfocitos T/inmunología , Linfocitos T/patologíaRESUMEN
The DNA mismatch repair system (MMR) maintains genome stability through recognition and repair of single-base mismatches and small insertion-deletion loops. Inactivation of the MMR pathway causes microsatellite instability and the accumulation of genomic mutations that can cause or contribute to cancer. In fact, 10-20% of certain solid and hematologic cancers are MMR-deficient. MMR-deficient cancers do not respond to some standard of care chemotherapeutics because of presumed increased tolerance of DNA damage, highlighting the need for novel therapeutic drugs. Toward this goal, we generated isogenic cancer cell lines for direct comparison of MMR-proficient and MMR-deficient cells. We engineered NCI-H23 lung adenocarcinoma cells to contain a doxycycline-inducible shRNA designed to suppress the expression of the mismatch repair gene MLH1, and compared single cell subclones that were uninduced (MLH1-proficient) versus induced for the MLH1 shRNA (MLH1-deficient). Here we present the characterization of these MMR-inducible cell lines and validate a novel class of rhodium metalloinsertor compounds that differentially inhibit the proliferation of MMR-deficient cancer cells.
Asunto(s)
Línea Celular Tumoral , Reparación de la Incompatibilidad de ADN/genética , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Antineoplásicos/química , Antineoplásicos/farmacología , Células Clonales/patología , Daño del ADN , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Técnicas de Silenciamiento del Gen , Humanos , Inestabilidad de Microsatélites/efectos de los fármacos , Homólogo 1 de la Proteína MutL , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Compuestos Organometálicos/química , Compuestos Organometálicos/farmacología , ARN Interferente Pequeño/genética , Rodio/químicaRESUMEN
High-resolution oligonucleotide array comparative genomic hybridization (aCGH) and spectral karyotyping (SKY) were applied to a panel of malignant mesothelioma (MMt) cell lines. SKY has not been applied to MMt before, and complete karyotypes are reported based on the integration of SKY and aCGH results. A whole genome search for homozygous deletions (HDs) produced the largest set of recurrent and non-recurrent HDs for MMt (52 recurrent HDs in 10 genomic regions; 36 non-recurrent HDs). For the first time, LINGO2, RBFOX1/A2BP1, RPL29, DUSP7, and CCSER1/FAM190A were found to be homozygously deleted in MMt, and some of these genes could be new tumor suppressor genes for MMt. Integration of SKY and aCGH data allowed reconstruction of chromosomal rearrangements that led to the formation of HDs. Our data imply that only with acquisition of structural and/or numerical karyotypic instability can MMt cells attain a complete loss of tumor suppressor genes located in 9p21.3, which is the most frequently homozygously deleted region. Tetraploidization is a late event in the karyotypic progression of MMt cells, after HDs in the 9p21.3 region have already been acquired.
Asunto(s)
Eliminación de Gen , Neoplasias Pulmonares/genética , Mesotelioma/genética , Línea Celular Tumoral , Aberraciones Cromosómicas , Cromosomas Humanos Par 9 , Hibridación Genómica Comparativa , Humanos , Mesotelioma Maligno , Cariotipificación EspectralRESUMEN
Stil (Sil, SCL/TAL1 interrupting locus) is a cytosolic and centrosomal protein expressed in proliferating cells that is required for mouse and zebrafish neural development and is mutated in familial microcephaly. Recently the Drosophila melanogaster ortholog of Stil was found to be important for centriole duplication. Consistent with this finding, we report here that mouse embryonic fibroblasts lacking Stil are characterized by slow growth, low mitotic index and absence of clear centrosomes. We hypothesized that Stil regulates mitosis through the tumor suppressor Chfr, an E3 ligase that blocks mitotic entry in response to mitotic stress. Mouse fibroblasts lacking Stil by genomic or RNA interference approaches, as well as E9.5 Stil(-/-) embryos, express high levels of the Chfr protein and reduced levels of the Chfr substrate Plk1. Exogenous expression of Stil, knockdown of Chfr or overexpression of Plk1 reverse the abnormal mitotic phenotypes of fibroblasts lacking Stil. We further demonstrate that Stil increases Chfr auto-ubiquitination and reduces its protein stability. Thus, Stil is required for centrosome organization, entry into mitosis and cell proliferation, and these functions are at least partially mediated by Chfr and its targets. This is the first identification of a negative regulator of the Chfr mitotic checkpoint.
Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Centrosoma/metabolismo , Regulación hacia Abajo , Mitosis , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Proteínas de Unión a Poli-ADP-Ribosa , Proteína 1 de la Leucemia Linfocítica T Aguda , Proteínas Supresoras de Tumor/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
PURPOSE: The provision of genetic services often occurs in a cascading fashion within families experiencing inherited diseases. This study examines whether previous family experiences with genetic services influences levels of psychological well-being of family members receiving services later. METHODS: Two hundred ninety-seven persons from 38 families with Lynch syndrome completed questionnaires before receiving genetic services. Baseline levels of test-related distress, depressive symptoms, and cancer worries were assessed in relationship to the (1) amount of time elapsed since services were provided to the index case and (2) generation of the family member relative to the index case. RESULTS: Family members in the same generation as the index case experienced significant increases in test-related distress (P = 0.003) and cancer worry (P = 0.001) with increasing time between receipt of genetic test results by the index case and provision of services to family members. Change in the number of depressive symptoms was not significant (P = 0.17). CONCLUSION: The provision of genetic services through a cascading approach significantly increases distress and worry among family members within the same generation as the index case who receive services at increasingly distant time intervals. Additional research is needed to explore social influences after the introduction of genetic services.
Asunto(s)
Familia/psicología , Servicios Genéticos/estadística & datos numéricos , Estrés Psicológico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Depresión/psicología , Composición Familiar , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mutación/genética , Adulto JovenRESUMEN
Multiple karyotypic abnormalities and chromosomal instability are characteristic features of many cancers that are relatively resistant to chemotherapeutic agents currently used in the clinic. These same features represent potentially targetable "states" that are essentially tumor specific. The assessment of the chromosomal state of a cancer cell population may provide a guide for the selection or development of drugs active against aggressive and intractable cancers.