Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Phylogenet Evol ; 175: 107587, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35830913

RESUMEN

Hybridization occurs often in the genus Diphasiastrum (Lycopodiaceae), which corroborates reports for the two other recognized lycophyte families, Isoëtaceae and Selaginellaceae. Here we investigate the case of D. alpinum and D. sitchense from the Russian Far East (Kamchatka). Their hybrid, D. × takedae, was morphologically recognizable in 16 out of 22 accessions showing molecular signatures of hybridization; the remaining accessions displayed the morphology of either D. alpinum (3) or D. sitchense (3). We sequenced markers for chloroplast microsatellites (cp, 175 accessions from Kamchatka) and for the two nuclear markers RPB and LFY (175 and 152 accessions). A selection of 42 accessions, including all hybrid accessions, was analysed via genotyping by sequencing (GBS). We found multiple, but apparently uniparental hybridization, clearly characterized by a deviating group of haplotypes for D. sitchense and all hybrids. All accessions showing molecular signatures of hybridization in nuclear markers revealed the parental haplotype of D. sitchense, however only the LFY marker differentiated between the parent species. GBS, including 69,819 quality-filtered single nucleotid polymorphisms, unambiguously identified the hybrids and revealed introgression to occur. Most of the hybrids were F1, but three turned out to be backcrosses with D. alpinum (one) and with D. sitchense (two). These observations are in contrast to prior findings on three European species and their intermediates where all three hybrids turned out to be independent F1 crosses without evidence of recent backcrossing. In this study, backcrossing was detected, which indicates a limited fertility of the hybrid taxon D. × takedae. A comparison of accessions of Kamchatkian D. alpinum with plants from Europe indicated possible cryptic speciation. Accessions from the Far East had (i) a lower DNA content (7.0 vs. 7.5 pg/2C), (ii) different prevailing cp haplotypes, and (iii) RPB genotypes, and (iv) a clearly different SNP pattern in GBS. Diphasiastrum sitchense and the similar D. nikoënse, for the latter additional accessions from Japan were investigated, appeared as forms of one diverse species, sharing genotypes in both nuclear markers, although chloroplast haplotypes and DNA content show slight variations.


Asunto(s)
Briófitas , Lycopodiaceae , Tracheophyta , Briófitas/genética , ADN , Variación Genética , Humanos , Hibridación Genética , Repeticiones de Microsatélite , Filogenia , Tracheophyta/genética
2.
Mol Phylogenet Evol ; 131: 181-192, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30415022

RESUMEN

In Europe, the genus Diphasiastrum (Lycopodiophyta) forms a reticulate network of six diploid taxa, including three parent species (D. alpinum, D. complanatum and D. tristachyum) and three hybrids (D. × issleri, D. × oellgaardii and D. × zeilleri). It was not clear if the hybrids arose once or repeatedly, if they have reproductive competence and if backcrossing occurs. We addressed these questions by analysing 209 accessions for chloroplast microsatellites (cp), two nuclear markers (introns of the RPB and LFY genes) and AFLP. For D. complanatum we show a sexual life cycle with alternation of generations: the gametophytic DNA amount is half of that of the sporophyte. With the exception of a single accession all hybrids display one of the two parental cp haplotypes; their frequencies do not differ significantly from a 1:1 ratio. Genotypes of nuclear markers are species-specific, displaying 2/4/1 (RPB) and 1/8/1 alleles (LFY) for the three parents mentioned above; all hybrids have one allele from each parent. All three hybrid taxa apparently represent independent F1 crosses. Hybridisation occurs bidirectional; no evidence for recent backcrossing was found. Asexual reproduction via agamospory is at least rare, since AFLP showed all hybrid plants to be different.


Asunto(s)
Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Núcleo Celular/genética , Variación Genética , Hibridación Genética , Lycopodiaceae/genética , Repeticiones de Microsatélite/genética , Alelos , Briófitas , Cloroplastos/genética , Europa (Continente) , Marcadores Genéticos , Haplotipos , Intrones/genética , Filogenia , Análisis de Componente Principal , Reproducción/genética
3.
Bot Stud ; 58(1): 40, 2017 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-28975526

RESUMEN

BACKGROUND: We studied the life history of Gagea graeca (L.) A. Terracc. (sect. Anthericoides) by field surveys on the Greek island of Crete, including quantitative analyses of 405 individuals, estimation of resource allocation by measuring the nitrogen content of different plant organs, assessing seed set and recording genetic diversity via amplified fragment length polymorphism (AFLP) analyses. In contrast to most species of the genus G. graeca seems to be a short-lived perennial, developing several characters that are rather typical for annual plants. RESULTS: Although seed set varies largely, flowering plants produce many (68 ± 79) small, flattened seeds (mean weight 73 ± 22 µg) in comparison to a single bulbil. If measured as nitrogen content of the respective plant parts, investment in seeds (25%) is much higher than that in bulbils (4%). In addition, the threshold for flower formation (expressed as bulb size where 50% of the plants form the respective structure) is with 2.17 ± 0.05 mm lower than that for bulbils with 2.80 ± 0.16 mm. This is in accordance with AFLP analyses revealing predominantly sexual reproduction (only 9.1% of 110 investigated plants belonged to clones). CONCLUSION: In the genus Gagea early, predominantly sexual reproduction seems to be characteristic for species from arid habitats, coupled with a low proportion of clonal plants.

4.
Protist ; 167(3): 234-53, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27128786

RESUMEN

Specimens of the snowbank myxomycete Meriderma atrosporum agg. from five European mountain ranges were sequenced for parts of the nuclear small subunit ribosomal RNA gene (SSU) and the protein elongation factor 1 alpha gene (EF1A). A phylogeny of the EF1A gene, including a very variable spliceosomal intron, resulted in seven phylogroups, and this topology was confirmed by SSU sequences. Two thirds of all specimens were heterozygous for the EF1A gene, and the two haplotypes of these specimens occurred always in the same phylogroup. Except for two cases in closely related phylogroups all ribotypes were as well limited to one phylogroup. This pattern is consistent with the assumption of reproductively isolated sexual biospecies. Numbers of EF1A-haplotypes shared between mountain ranges correlate with geographical distance, suggesting relative isolation but occasional long-distance dispersal by spores. Most subpopulations (divided by putative biospecies and mountain ranges) were in Hardy-Weinberg equilibrium. A simulation assuming panmixis within but not in between subpopulations suggested that similar numbers of shared genotypes can be created by chance through sexual reproduction alone. Our results support the biospecies concept, derived from experiments with cultivable members of the Physarales. We discuss the results on the background of possible reproductive options in myxomycetes.


Asunto(s)
Intrones , Mixomicetos/crecimiento & desarrollo , Mixomicetos/genética , Recombinación Genética , Análisis por Conglomerados , ADN Protozoario/química , ADN Protozoario/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Haplotipos , Heterocigoto , Mixomicetos/aislamiento & purificación , Factor 1 de Elongación Peptídica/genética , Filogenia , ARN Ribosómico 18S/genética , Ribotipificación , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA