Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Hum Exp Toxicol ; 43: 9603271241269027, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39259645

RESUMEN

Consumption of ergot alkaloids during the second half of gestation has been shown to decrease umbilical artery vasoactivity resulting in decreased birth weights. Negative vascular effects of ergot alkaloids are mediated predominantly through serotonergic and adrenergic receptors in other tissues. Vasoactivity of serotonin (5-HT) receptors 5-HT2A and 5-HT1B/1D in umbilical artery and vein from ewes receiving endophyte-infected seed (E + 1.77 mg ergovaline/hd/d) or a control total mixed ration (CON; 0 mg ergovaline/hd/d) tall fescue seed at d-110 and d-133 of gestation was evaluated. Gravid reproduction tracts were collected from ewes. Two-mm sections of umbilical artery and vein were exposed to increasing concentrations of a 5-HT1B/1D agonist and 5-HT2A agonist. The 5-HT1B/1D agonist did not stimulate a contractile response in artery or vein or either gestation time point. 5-HT2A agonist caused large responses in artery with greatest occurring at d-110 and decreasing in magnitude as days of gestation increased (p < 0.05). On d-110 and 133 of gestation, arteries from CON ewes had greater contractile response than arteries collected from E+ ewes (p < 0.05). Veins responded to increasing concentrations of the 5-HT2A agonist. Maximal d-110 vein response was greater than d-133 when exposed to 5-HT2A agonist (p < 0.05). Unlike the artery, veins from E+ ewes had greater d-133 contractile response than CON (p < 0.05). Vascular contractions of umbilical artery and vein are induced by 5-HT2A receptor activity and not 5-HT1B/1D. Umbilical artery 5-HT2A receptor activity was more sensitive to seed treatment and could be responsible for ergot alkaloid-induced intra-uterine growth restriction.


Asunto(s)
Alcaloides de Claviceps , Receptores de Serotonina , Arterias Umbilicales , Animales , Femenino , Embarazo , Alcaloides de Claviceps/toxicidad , Ergotaminas , Receptores de Serotonina/metabolismo , Semillas , Ovinos , Arterias Umbilicales/efectos de los fármacos , Venas Umbilicales/efectos de los fármacos , Vasoconstricción/efectos de los fármacos
2.
PLoS One ; 19(8): e0308983, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39146343

RESUMEN

We previously demonstrated that postruminal casein infusion and exogenous glucagon-like peptide 2 (GLP-2) administration independently stimulated growth and carbohydrase activity of the pancreas and jejunal mucosa in cattle. The objective of the current study was to profile the jejunal mucosal transcriptome of cattle using next-generation RNA sequencing in response to postruminal casein infusion and exogenous GLP-2. Twenty-four Holstein steers [250 ± 23.1 kg body weight (BW)] received a continuous abomasal infusion of 3.94 g raw corn starch/kg of BW combined with either 0 or 1.30 g casein/kg of BW for 7 d. Steers received subcutaneous injections at 0800 and 2000 h to provide either 0 or 100 µg GLP-2/kg of BW per day. At the end of the 7-d treatment period, steers were slaughtered for collection of the jejunal mucosa. Total RNA was extracted from jejunal mucosal tissue, strand-specific cDNA libraries were prepared, and RNA sequencing was conducted to generate 150-bp paired-end reads at a depth of 40 M reads per sample. Differentially expressed genes (DEG), KEGG pathway enrichment, and gene ontology enrichment were determined based on the FDR-corrected P-value (padj). Exogenous GLP-2 administration upregulated (padj < 0.05) 667 genes and downregulated 1,101 genes of the jejunal mucosa. Sphingolipid metabolism, bile secretion, adherens junction, and galactose metabolism were among the top KEGG pathways enriched with upregulated DEG (padj < 0.05) in response to exogenous GLP-2 administration. The top gene ontologies enriched with upregulated DEG (padj < 0.05) in response to exogenous GLP-2 administration included nutrient metabolic processes, brush border and bicellular tight junction assembly, and enzyme and transporter activities. Exogenous GLP-2 administration increased or tended to increase (padj < 0.10) brush border carbohydrase (MGAM, LCT, TREH), hexose transporter (SLC5A1, SLC2A2), and associated transcription factor (HNF1, GATA4, KAT2B) mRNA expression of the jejunal mucosa. Gene ontologies and KEGG pathways that were downregulated (padj < 0.05) in response to exogenous GLP-2 were related to genetic information processing. Postruminal casein infusion downregulated (padj < 0.05) 7 jejunal mucosal genes that collectively did not result in enriched KEGG pathways or gene ontologies. This study highlights some of the transcriptional mechanisms associated with increased growth, starch assimilation capacity, and barrier function of the jejunal mucosa in response to exogenous GLP-2 administration.


Asunto(s)
Caseínas , Péptido 2 Similar al Glucagón , Mucosa Intestinal , Yeyuno , Transcriptoma , Animales , Bovinos , Péptido 2 Similar al Glucagón/administración & dosificación , Péptido 2 Similar al Glucagón/farmacología , Yeyuno/metabolismo , Yeyuno/efectos de los fármacos , Caseínas/genética , Caseínas/administración & dosificación , Transcriptoma/efectos de los fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Masculino , Abomaso/efectos de los fármacos , Abomaso/metabolismo , Perfilación de la Expresión Génica
3.
Physiol Rep ; 12(13): e16128, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38946059

RESUMEN

To better understand mechanisms of serotonin- (5-HT) mediated vasorelaxation, isolated lateral saphenous veins from cattle were assessed for vasoactivity using myography in response to increasing concentrations of 5-HT or selective 5-HT receptor agonists. Vessels were pre-contracted with 1 × 10-4 M phenylephrine and exposed to increasing concentrations of 5-HT or 5-HT receptor agonists that were selective for 5-HT1B, 5-HT2B, 5-HT4, and 5-HT7. Vasoactive response data were normalized as a percentage of the maximum contractile response induced by the phenylephrine pre-contraction. At 1 × 10-7 M 5-HT, a relaxation was observed with an 88.7% decrease (p < 0.01) from the phenylephrine maximum. At 1 × 10-4 M 5-HT, a contraction was observed with a 165% increase (p < 0.01) from the phenylephrine maximum. Increasing concentrations of agonists selective for 5-HT2B, 5-HT4, or 5-HT7 resulted in a 27%, 92%, or 44% (p < 0.01) decrease from the phenylephrine maximum, respectively. Of these 5-HT receptor agonists, the selective 5-HT4 receptor agonist resulted in the greatest potency (-log EC50) value (6.30) compared with 5-HT2B and 5-HT7 receptor agonists (4.21 and 4.66, respectively). To confirm the involvement of 5-HT4 in 5-HT-mediated vasorelaxation, blood vessels were exposed to either DMSO (solvent control) or a selective 5-HT4 antagonist (1 × 10-5 M) for 5-min prior to the phenylephrine pre-contraction and 5-HT additions. Antagonism of the 5-HT4 receptor attenuated the vasorelaxation caused by 5-HT. Approximately 94% of the vasorelaxation occurring in response to 5-HT could be accounted for through 5-HT4, providing strong evidence that 5-HT-mediated vasorelaxation occurs through 5-HT4 activation in bovine peripheral vasculature.


Asunto(s)
Vena Safena , Serotonina , Vasodilatación , Animales , Bovinos , Vasodilatación/efectos de los fármacos , Vasodilatación/fisiología , Vena Safena/metabolismo , Vena Safena/efectos de los fármacos , Vena Safena/fisiología , Serotonina/farmacología , Receptores de Serotonina/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Fenilefrina/farmacología , Agonistas de Receptores de Serotonina/farmacología , Masculino
4.
Domest Anim Endocrinol ; 89: 106873, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39032187

RESUMEN

Fescue toxicosis is a syndrome occurring from the consumption of endophyte-infected tall fescue and results in substantial economic losses to the beef industry primarily from reduced growth accompanied by decreased dry matter intake (DMI); however, the associations characterizing this reduction in DMI have yet to be elucidated. The objective of this experiment was to identify endocrine changes associated with intake regulation post-consumption of endophyte-infected tall fescue seed (E+). Twelve Holstein steers were stratified by body weight and assigned to 1 of 3 treatments (n=4): 0 ppm ergovaline (ERV), 1.8 ppm ERV, or 2.7 ppm ERV. Treatments were achieved by combining differing proportions of ground E+ and non-endophyte-infected tall fescue seed. Steers were adapted to their diets for 7 d followed by a 7 d DMI collection period. Within treatment, steers were assigned to a sampling day (d 16 or d 17). Blood samples were collected every 20 min for 8 h, beginning 1 h before feeding. Intake data was analyzed using the MIXED procedure of SAS 9.4 (SAS Inst. Inc., Cary, NC) with treatment, day, and the interaction as fixed effects. Hormone and metabolite data were analyzed with the fixed effect of treatment, time, and the interaction including time as a repeated measure and orthogonal contrasts. Dry matter intake was linearly decreased with increasing ERV in the diet (P < 0.001). Insulin and leptin concentrations exhibited a quadratic effect (P = 0.018 and P = 0.005) with insulin concentrations highest for the 2.7 ppm treatment and leptin concentrations highest for the 1.8 ppm treatment. No differences were detected for active ghrelin or ß-hydroxybuytrate concentrations among treatment groups. Further, steers consuming both the 1.8 and 2.7 ppm ERV treatments had lower prolactin concentrations compared to the 0 ppm treatment (quadratic, P= 0.019). Glucose concentrations had a tendency for a linear increase as ERV concentrations increased (P = 0.091). A treatment × time interaction (P = 0.002) was noted in NEFA concentrations, with the 1.8 ppm ERV treatment showing increased pre-feeding concentrations, and the 2.7 ppm ERV treatment exhibiting elevated NEFA concentrations as time post-feeding progressed. The results suggest that E+ consumption reduces intake likely through alterations in intake-related hormones and post-absorptive metabolism and contributes to our current understanding of E+ effects on intake reduction while providing avenues for future research.


Asunto(s)
Alimentación Animal , Dieta , Endófitos , Festuca , Semillas , Animales , Bovinos , Masculino , Semillas/química , Festuca/microbiología , Alimentación Animal/análisis , Endófitos/fisiología , Dieta/veterinaria , Ingestión de Alimentos/fisiología , Ergotaminas , Leptina/sangre , Insulina/sangre
5.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38520304

RESUMEN

The impact of ergot toxicosis on livestock industries is detrimental and treatments are needed in many countries. The objective of this study was to evaluate the effects of acute exposure to ergot alkaloids and 5-hydroxytryptophan (5-HTP) supplementation on feed intake, serotonin metabolism, and blood metabolites in cattle. Eight Holstein steers (538 ±â€…18 kg) fitted with ruminal cannulas were used in a replicated 4 × 4 Latin Square design experiment with a 2 × 2 factorial treatment structure. The treatments were the combination of 0 (E-) or 15 µg ergovaline/kg BW (E+) and 0 (5HTP-) or 0.5 mg of 5-hydroxy-l-tryptophan/kg BW (5HTP+) administered daily for 6 d. Toxic endophyte-infected tall fescue seed was used to supply the daily dose of ergovaline. Endophyte-free seed was used to equalize seed intake between treatments. Ground seed was placed into the rumen immediately before feeding. The 5-HTP was dissolved in water and infused into the abomasum via the reticulo-omasal orifice. Blood was collected from a jugular vein catheter at 0, 1, 2, 4, 8, and 24 h after treatment administration. Ergovaline without 5-HTP (E+/5HTP-) decreased dry matter intake (DMI) in comparison to steers without ergovaline and 5-HTP (E-/5HTP-). However, 5-HTP infusion in association with ergovaline (E+/5HTP+) normalized the DMI. Although E + did not affect (P > 0.05) the area under the curve (AUC) of serum 5-HTP, 5-hydroxyindoleacetic acid, tryptophan, and kynurenine, serum and plasma serotonin concentrations were decreased (P < 0.05). The infusion of 5-HTP increased (P < 0.05) the AUC of serum 5-HTP, serum and plasma serotonin, and serum 5-hydroxyindoleacetic acid. In conclusion, acute exposure to ergot alkaloids reduced DMI and circulating serotonin in cattle but 5-HTP administration showed potential to normalize both circulating serotonin and feed intake.


Some grass species have a symbiotic relationship with an endophytic fungus that produces toxic ergot alkaloids which have detrimental impacts on herbivores. Ergot alkaloids have a significant impact on livestock production causing annual loss to the livestock industry that likely exceeds $1 billion. Effective treatment for this toxicosis is still needed. The objective of this study was to evaluate the effects of acute exposure to ergot alkaloids and 5-hydroxytryptophan supplementation on feed intake, serotonin metabolism, and blood metabolites in cattle. We found that 5-hydroxytryptophan administration has the potential to normalize both circulating serotonin and feed intake reduced by ergot alkaloid consumption.


Asunto(s)
Alcaloides de Claviceps , Serotonina , Bovinos , Animales , 5-Hidroxitriptófano , Ácido Hidroxiindolacético , Alcaloides de Claviceps/toxicidad , Ingestión de Alimentos , Alimentación Animal/análisis
6.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38502533

RESUMEN

Consumption of ergot alkaloids from endophyte-infected tall fescue results in losses to the livestock industry in many countries and a means to mitigate these losses is needed. The objective of this study was to evaluate intra-abomasal infusion of the dopamine precursor, levodopa (L-DOPA), on dopamine metabolism, feed intake, and serum metabolites of steers exposed to ergot alkaloids. Twelve Holstein steers (344.9 ±â€…9.48 kg) fitted with ruminal cannula were housed with a cycle of heat challenge during the daytime (32 °C) and thermoneutral at night (25 °C). The steers received a basal diet of alfalfa cubes containing equal amounts of tall fescue seed composed of a mixture of endophyte-free (E-) or endophyte-infected tall fescue seeds (E+) equivalent to 15 µg ergovaline/kg body weight (BW) for 9 d followed by intra-abomasal infusion of water (L-DOPA-) or levodopa (L-DOPA+; 2 mg/kg BW) for an additional 9 d. Afterward, the steers were pair-fed for 5 d to conduct a glucose tolerance test. The E+ treatment decreased (P = 0.005) prolactin by approximately 50%. However, prolactin increased (P = 0.050) with L-DOPA+. Steers receiving E+ decreased (P < 0.001) dry matter intake (DMI); however, when supplemented with L-DOPA+ the decrease in DMI was less severe (L-DOPA × E, P = 0.003). Also, L-DOPA+ infusion increased eating duration (L-DOPA × E, P = 0.012) when steers were receiving E+. The number of meals, meal duration, and intake rate were not affected (P > 0.05) by E+ or L-DOPA+. The L-DOPA+ infusion increased (P < 0.05) free L-DOPA, free dopamine, total L-DOPA, and total dopamine. Conversely, free epinephrine and free norepinephrine decreased (P < 0.05) with L-DOPA+. Total epinephrine and total norepinephrine were not affected (P > 0.05) by L-DOPA+. Ergot alkaloids did not affect (P > 0.05) circulating free or total L-DOPA, dopamine, or epinephrine. However, free and total norepinephrine decreased (P = 0.046) with E+. Glucose clearance rates at 15 to 30 min after glucose infusion increased with L-DOPA+ (P < 0.001), but not with E+ (P = 0.280). Administration of L-DOPA as an agonist therapy to treat fescue toxicosis provided a moderate increase in DMI and eating time and increased plasma glucose clearance for cattle dosed with E+ seed.


Fescue has become the dominant cool-season perennial grass in the southeastern region of the United States and is also found in other countries. Endophytes from a plant­fungus symbiotic relationship produce toxic alkaloids that have caused significant annual economic losses to the livestock industry. Treatments to alleviate this toxicosis are still demanded. This study evaluates the infusion of the dopamine precursor, levodopa (L-DOPA), to mitigate the toxicosis caused by ergot alkaloids. When L-DOPA was infused, eating duration increased and the decrease in feed intake caused by ergot alkaloids was less severe. Additionally, circulating dopamine and glucose clearance increased with L-DOPA. These results suggest that L-DOPA has the potential to aid in the mitigation of the toxicosis caused by ergot alkaloids.


Asunto(s)
Alcaloides de Claviceps , Festuca , Lolium , Bovinos , Animales , Alcaloides de Claviceps/toxicidad , Levodopa , Dopamina , Prolactina , Ingestión de Alimentos , Endófitos , Norepinefrina , Alimentación Animal/análisis , Epinefrina , Glucosa
7.
BMC Vet Res ; 19(1): 208, 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845710

RESUMEN

BACKGROUND: Ruminant livestock experience a number of challenges, including high concentrate diets, weaning and transport, which can increase their risk of disorders such as ruminal acidosis, and the associated inflammation of the ruminal epithelium. Cannabidiol (CBD), a phytochemical from hemp (Cannabis sativa), is a promising target as a therapy for gastrointestinal inflammation, and may be extremely valuable as either a treatment or prophylactic. However, the effects of CBD in the the ruminant gastrointestinal tract have not been explored, in part due to the restrictions on feeding hemp to livestock. Therefore, the objective of this study was to investigate the immunomodulatory properties of CBD using a model of inflammation in primary ruminal epithelial cells (REC). In addition, CBD dose was evaluated for possible cytotoxic effects. RESULTS: Negative effects on cell viability were not observed when REC were exposed to 10 µM CBD. However, when the dose was increased to 50 µM for 24 h, there was a significant cytotoxic effect. When 10 µM CBD was added to culture media as treatment for inflammation induced with lipopolysaccharide (LPS), expression of genes encoding for pro-inflammatory cytokine IL1B was less compared to LPS exposure alone, and CBD resulted in a down-regulation of IL6. As a pre-treatment, prior to LPS exposure, REC had decreased expression of IL6 and CXCL10 while CBD was present in the media, but not when it was removed prior to addition of LPS. CONCLUSIONS: Results suggest that CBD may reduce cytokine transcription both during LPS-induced inflammation and when used preventatively, although these effects were dependent on its continued presence in the culture media. Overall, these experiments provide evidence of an immunomodulatory effect by CBD during a pro-inflammatory response in primary REC in culture.


Asunto(s)
Cannabidiol , Cannabis , Enfermedades de los Bovinos , Inflamación , Bovinos , Animales , Cannabidiol/farmacología , Cannabidiol/uso terapéutico , Lipopolisacáridos/farmacología , Interleucina-6 , Inflamación/tratamiento farmacológico , Inflamación/veterinaria , Citocinas/genética , Células Epiteliales , Rumiantes , Medios de Cultivo , Enfermedades de los Bovinos/tratamiento farmacológico
8.
J Nutr ; 153(10): 2854-2867, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37573014

RESUMEN

BACKGROUND: Increasing luminal carbohydrate flow decreases pancreatic α-amylase activity but can increase jejunal maltase activity, suggesting that regulation of carbohydrase activity is perhaps uncoordinated in response to luminal carbohydrate flow. Increasing luminal casein flow increases pancreatic α-amylase activity in cattle, and exogenous glucagon-like peptide 2 (GLP-2) has been shown to increase small intestinal α-glucosidase activity in nonruminants. OBJECTIVES: The objective was to evaluate the effects of postruminal casein infusion, exogenous GLP-2, or their combination on endogenous pancreatic and small intestinal carbohydrase activity in cattle postruminally infused with starch. METHODS: Holstein steers [n = 24; 250 ± 23 kg body weight (BW)] received a continuous abomasal infusion of 3.94 g raw corn starch/kg of BW combined with either 0 or 1.30 g casein/kg of BW. Steers received subcutaneous injections in 2 equal portions daily of excipient (0.5% bovine serum albumin) or 100 µg GLP-2/kg of BW per day. At the end of the 7-d treatment period, steers were slaughtered for tissue collection. Data were analyzed using the MIXED procedure of SAS version 9.4 (SAS Institute Inc.). RESULTS: Postruminal casein infusion increased (P ≤ 0.03) pancreatic mass by 12.6%, total pancreatic α-amylase activity by 50%, and postruminal starch disappearance from 96.7% to 99.3%. Exogenous GLP-2 increased (P < 0.01) total small intestinal and mucosal mass by 1.2 kg and 896 g, respectively. Relative to control, GLP-2 and casein + GLP-2 increased (P = 0.04) total small intestinal α-glucosidase activity by 83.5%. Total small intestinal maltase, isomaltase, and glucoamylase activity was 90%, 100%, and 66.7% greater for GLP-2 and casein + GLP-2 steers compared with control. CONCLUSIONS: Casein increased pancreatic α-amylase activity, GLP-2 increased small intestinal α-glucosidase activity, and the combination of casein and GLP-2 increased both pancreatic α-amylase activity and small intestinal α-glucosidase activity. This novel approach provides an in vivo model to evaluate effects of increasing endogenous carbohydrase activity on small intestinal starch digestion.

9.
Front Vet Sci ; 10: 1104361, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143501

RESUMEN

Introduction: Holstein steers (n = 32) were used to determine if the ergot analog, bromocriptine decreases muscle protein synthesis through inhibitory action on the mTOR pathway via a direct effect on signal proteins, and if these negative effects can be alleviated with anabolic agents. Methods: Steers were treated with intramuscular administration of bromocriptine (vehicle or 0.1 mg/kg BW) and a subdermal commercial steroidal implant containing trenbolone acetate (TBA) and estradiol 17ß (with or without), in a 2×2 factorial design. During the 35 day experiment, intake was restricted to 1.5 times maintenance energy requirement. On days 27 through 32, steers were moved to metabolism stalls for urine collection, and whole-body protein turnover was determined using a single pulse dose of [15N] glycine into the jugular vein on day 28. On day 35, skeletal muscle samples were collected before (basal state) and 60 min after (stimulated state) an i.v. glucose challenge (0.25 g glucose/kg). Blood samples were collected at regular intervals before and after glucose infusion for determination of circulating concentrations of glucose and insulin. Results: Bromocriptine reduced insulin and glucose clearance following the glucose challenge, indicating decreased insulin sensitivity and possible disruption of glucose uptake and metabolism in the skeletal muscle. Conversely, analysis of whole-body protein turnover demonstrated that bromocriptine does not appear to affect protein synthesis or urea excretion. Western immunoblot analysis of skeletal muscle showed that it did not affect abundance of S6K1 or 4E-BP1, so bromocriptine does not appear to inhibit activation of the mTOR pathway or protein synthesis. Estradiol/TBA implant decreased urea excretion and protein turnover but had no effect on protein synthesis, suggesting that steroidal implants promote protein accretion through unchanged rates of synthesis and decreased degradation, even in the presence of bromocriptine, resulting in improved daily gains. Implanted steers likely experienced increased IGF-1 signaling, but downstream activation of mTOR, S6K and 4E-BP1, and thus increased protein synthesis did not occur as expected. Conclusions: Overall, this data suggests that bromocriptine does not have a negative impact on muscle protein synthetic pathways independent of DMI.

10.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37004204

RESUMEN

Ergovaline (ERV), produced in toxic endophyte-infected tall fescue, causes potent vasoconstriction of bovine peripheral and visceral vasculature. Ergovaline acts as both an agonist and an antagonist in bovine gut blood vessels through serotonin (5-HT) receptors and it appears that the type of action could be influenced by the extent of ERV exposure. Because it was unclear how the duration of ERV exposure influences 5-HT-mediated vasoactivity, experiments were designed to evaluate how simultaneous or prior ERV exposure influenced 5-HT-mediated vasoactivity of mesenteric artery (MA) and vein (MV) segments from Holstein steers (N = 10). Vessels were incubated in Krebs-Henseleit buffer containing 0, 0.01, or 0.1 µM ERV for 24 h prior to the 5-HT dose-response or exposed to fixed concentrations of 0, 0.01, or 0.1 µM ERV simultaneously during the 5-HT dose-response. Vessels were suspended in chambers of a multimyograph containing Krebs-Henseleit buffer and equilibrated to 1 g tension for 90 min. Vessels were exposed to increasing concentrations of 5-HT (5 × 10-8 M to 1 × 10-4 M) every 15 min and contractile responses were normalized as a percentage of the maximum contractile response induced by 120 mM KCl reference addition. Two-way analysis of variance was used to separately analyze data for each vessel type and duration of exposure using the MIXED procedure of SAS. When 5-HT concentration increased from 5 × 10-8 to 1 × 10-6 M, simultaneous addition of 0.1 µM ERV increased (P < 0.01) the contractile response of MV compared with additions of 0 and 0.01 µM ERV. At 1 × 10-4 M 5-HT, the simultaneous presence of 0.01 and 0.1 µM ERV decreased (P < 0.01) the contractile response of both MA and MV compared with 0 µM ERV addition. As 5-HT concentrations increased, the contractile response increased (P < 0.01) in both MA and MV with no previous ERV exposure, but decreased in MA and MV with 24 h prior exposure to 0.01 and 0.1 µM ERV. These data demonstrate that the duration of ERV exposure influences 5-HT-mediated vasoconstriction and likely vasorelaxation in bovine mesenteric vasculature. If ERV and 5-HT exposure occur simultaneously, ERV can act as a partial agonist of 5-HT-mediated vasoconstriction. If 5-HT exposure occurs after blood vessels have had prior ERV exposure, it appears that 5-HT may induce vasorelaxation of blood vessels. More research is needed to identify cellular and molecular mechanisms involved with 5-HT-mediated vasoactivity.


Consumption of ergot alkaloids found in endophyte-infected tall fescue can lead to symptoms of fescue toxicosis, such as vasoconstriction, in ruminant livestock species. Ergovaline is one of the primary ergot alkaloids responsible for causing vasoconstriction when toxic varieties of fescue are consumed. It has been previously shown that ergovaline causes vasoconstriction by interacting with vascular serotonin receptors in cattle and sheep. Depending on when ergovaline exposure occurs, ergovaline can function as an agonist (stimulant) or antagonist (inhibitor) of vascular activity. However, it is unclear how the duration of ergovaline exposure affects vasoconstriction caused by serotonin. Experiments were conducted using the bovine mesenteric artery and mesenteric vein that were exposed to either 0, 0.01, or 0.1 µM ergovaline for 24-h prior to serotonin additions or simultaneously with serotonin additions. Maximum contractile response data were recorded using a multimyograph system and normalized as a percentage of the contractile response produced by the reference compound, KCl. The results of these experiments demonstrated that the duration of ergovaline exposure influences serotonin-mediated vasoconstriction and possibly vasorelaxation in bovine mesenteric vasculature. If ergovaline and serotonin exposure occur simultaneously, ergovaline can act as an agonist or antagonist of serotonin-mediated vasoconstriction. If serotonin exposure occurs after prior ergovaline exposure, serotonin can induce vasorelaxation of blood vessels. Understanding how complex interactions between ergovaline and serotonin occur and affect vascular function will aid in the development of strategies to mitigate sustained vasoconstriction caused during fescue toxicosis.


Asunto(s)
Alcaloides de Claviceps , Serotonina , Bovinos , Animales , Serotonina/farmacología , Alcaloides de Claviceps/toxicidad , Ergotaminas/toxicidad , Receptores de Serotonina , Alimentación Animal/análisis
11.
Front Vet Sci ; 9: 889888, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35711802

RESUMEN

The objectives of the study were to study the effects of the synthetic ergot alkaloid (EA), bromocriptine, on glucose and lipid metabolism in insulin dysregulated (ID, n = 7) and non-ID (n = 8) mares. Horses were individually housed and fed timothy grass hay and two daily concentrate meals so that the total diet provided 120% of daily DE requirements for maintenance. All horses were given intramuscular bromocriptine injections (0.1 mg/kg BW) every 3 days for 14 days. Before and after 14 days of treatment horses underwent a combined glucose-insulin tolerance test (CGIT) to assess insulin sensitivity and a feed challenge (1 g starch/kg BW from whole oats) to evaluate postprandial glycemic and insulinemic responses. ID horses had higher basal plasma concentrations of insulin (P = 0.01) and triglycerides (P = 0.02), and lower concentrations of adiponectin (P = 0.05) compared with non-ID horses. The CGIT response curve showed that ID horses had slower glucose clearance rates (P = 0.02) resulting in a longer time in positive phase (P = 0.03) and had higher insulin concentrations at 75 min (P = 0.0002) compared with non-ID horses. Glucose (P = 0.02) and insulin (P = 0.04) responses to the feeding challenge were lower in non-ID compared to ID horses. Regardless of insulin status, bromocriptine administration increased hay intake (P = 0.03) and decreased grain (P < 0.0001) and total DE (P = 0.0002) intake. Bromocriptine treatment decreased plasma prolactin (P = 0.0002) and cholesterol (P = 0.10) and increased (P = 0.02) adiponectin concentrations in all horses. Moreover, in both groups of horses, bromocriptine decreased glucose clearance rates (P = 0.02), increased time in positive phase (P = 0.04) of the CGIT and increased insulin concentrations at 75 min (P = 0.001). The postprandial glycemic (P = 0.01) and insulinemic (P = 0.001) response following the oats meal was lower after bromocriptine treatment in all horses. In conclusion, in contrast to data in humans and rodents, bromocriptine treatment reduced insulin sensitivity in all horses, regardless of their insulin status. These results indicate that the physiological effects of EA might be different in horses compared to other species. Moreover, because bromocriptine shares a high degree of homology with natural EA, further investigation is warranted in horses grazing endophyte-infected grasses.

12.
Toxins (Basel) ; 14(3)2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35324683

RESUMEN

For many years, ergot alkaloids have been considered both a problem to be mitigated and a potential medical cure [...].


Asunto(s)
Alcaloides de Claviceps , Alcaloides de Claviceps/toxicidad , Compuestos Heterocíclicos de 4 o más Anillos
13.
PLoS One ; 16(7): e0253754, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34288928

RESUMEN

Subacute rumen acidosis (SARA) occurs when highly fermentable carbohydrates are introduced into the diet, decreasing pH and disturbing the microbial ecology of the rumen. Rumen amylolytic bacteria rapidly catabolize starch, fermentation acids accumulate in the rumen and reduce environmental pH. Historically, antibiotics (e.g., monensin, MON) have been used in the prevention and treatment of SARA. Biochanin A (BCA), an isoflavone produced by red clover (Trifolium pratense), mitigates changes associated with starch fermentation ex vivo. The objective of the study was to determine the effect of BCA on amylolytic bacteria and rumen pH during a SARA challenge. Twelve rumen fistulated steers were assigned to 1 of 4 treatments: HF CON (high fiber control), SARA CON, MON (200 mg d-1), or BCA (6 g d-1). The basal diet consisted of corn silage and dried distiller's grains ad libitum. The study consisted of a 2-wk adaptation, a 1-wk HF period, and an 8-d SARA challenge (d 1-4: 40% corn; d 5-8: 70% cracked corn). Samples for pH and enumeration were taken on the last day of each period (4 h). Amylolytic, cellulolytic, and amino acid/peptide-fermenting bacteria (APB) were enumerated. Enumeration data were normalized by log transformation and data were analyzed by repeated measures ANOVA using the MIXED procedure of SAS. The SARA challenge increased total amylolytics and APB, but decreased pH, cellulolytics, and in situ DMD of hay (P < 0.05). BCA treatment counteracted the pH, microbiological, and fermentative changes associated with SARA challenge (P < 0.05). Similar results were also observed with MON (P < 0.05). These results indicate that BCA may be an effective alternative to antibiotics for mitigating SARA in cattle production systems.


Asunto(s)
Acidosis/tratamiento farmacológico , Alimentación Animal , Enfermedades de los Bovinos/tratamiento farmacológico , Bovinos/microbiología , Fibras de la Dieta , Contenido Digestivo/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Genisteína/uso terapéutico , Rumen/microbiología , Acidosis/microbiología , Animales , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Carga Bacteriana , Enfermedades de los Bovinos/microbiología , Celulosa/metabolismo , Desoxiglucosa/farmacología , Carbohidratos de la Dieta/metabolismo , Fibras de la Dieta/metabolismo , Proteínas en la Dieta/metabolismo , Fermentación , Genisteína/farmacología , Concentración de Iones de Hidrógeno , Ionóforos/farmacología , Masculino , Distribución Aleatoria , Ensilaje , Almidón/metabolismo
14.
Toxins (Basel) ; 13(3)2021 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803203

RESUMEN

Grazing endophyte-infected, toxic tall fescue reduces cow/calf production; therefore, this study examines alternate strategies such as use of novel endophyte fescue varieties during late gestation and early lactation or genetic selection of resistant cows. Pregnant cows (n = 75) were randomly assigned to fescue endophyte type: 1) endophyte-infected ergot alkaloid producing tall fescue (E+) or 2) novel endophyte-infected, non-toxic tall fescue (NOV) within maternal (A|A, n = 38 and G|G, n = 37) DRD2 genotype to examine changes in cow/calf performance and milk production during late gestation and early lactation. Grazing E+ fescue pastures during late gestation reduced cow body weight gain but did not alter calf birth weight compared to NOV. Milk production and calf ADG during the first 30 day of lactation were lower for E+ than NOV. The calving rate was reduced, but not calving interval for E+ cows. The adjusted 205-day weight of calves was lower in those grazing E+ with their dams compared to NOV. There were no interactions between DRD2 genotype and fescue endophyte type indicating that genotype was not associated with response to E+ fescue in this study. Overall, grazing NOV tall fescue pastures rather than E+ during critical stages of production improved cow gain during late gestation, calving rate, early milk production and calf growth.


Asunto(s)
Endófitos/metabolismo , Alcaloides de Claviceps/metabolismo , Lactancia , Lolium/microbiología , Polimorfismo de Nucleótido Simple , Receptores de Dopamina D2/genética , Alimentación Animal/microbiología , Animales , Animales Lactantes , Peso al Nacer , Bovinos , Endófitos/crecimiento & desarrollo , Alcaloides de Claviceps/toxicidad , Femenino , Microbiología de Alimentos , Genotipo , Edad Gestacional , Ganancia de Peso Gestacional , Herbivoria , Embarazo , Receptores de Dopamina D2/metabolismo , Factores de Tiempo
15.
Toxins (Basel) ; 14(1)2021 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-35050986

RESUMEN

Ergot alkaloid mycotoxins interfere in many functions associated with serotonergic neurotransmitters. Therefore, the objective was to evaluate whether the association of serotonin (5-hydroxytryptamine, 5-HT) and ergot alkaloids during a 24 h pre-incubation could affect the vascular contractile response to ergot alkaloids. To evaluate the effects of 24 h exposure to 5-HT and ergot alkaloids (ergovaline, ERV), two assays were conducted. The first assay determined the half-maximal inhibitory concentration (IC50) following the 24 h pre-exposure period, while the second assay evaluated the effect of IC50 concentrations of 5-HT and ERV either individually or in combination. There was an interaction between previous exposure to 5-HT and ERV. Previous exposure to 5-HT at the IC50 concentration of 7.57 × 10-7 M reduced the contractile response by more than 50% of control, while the exposure to ERV at IC50 dose of 1.57 × 10-10 M tended to decrease (p = 0.081) vessel contractility with a response higher than 50% of control. The 24 h previous exposure to both 5-HT and ERV did not potentiate the inhibitory response of blood vessels in comparison with incubation with each compound alone. These results suggest receptor competition between 5-HT and ERV. More studies are necessary to determine the potential of 5-HT to treat toxicosis caused by ergot alkaloids.


Asunto(s)
Ergotaminas/toxicidad , Micotoxinas/toxicidad , Serotonina/farmacología , Vasoconstricción/efectos de los fármacos , Animales , Bovinos , Femenino
16.
Toxins (Basel) ; 12(12)2020 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-33256042

RESUMEN

Fescue toxicosis impacts beef cattle production via reductions in weight gain and muscle development. Isoflavone supplementation has displayed potential for mitigating these effects. The objective of the current study was to evaluate isoflavone supplementation with fescue seed consumption on rumen and serum metabolomes. Angus steers (n = 36) were allocated randomly in a 2 × 2 factorial arrangement of treatments including endophyte-infected (E+) or endophyte-free (E-) tall fescue seed, with (P+) or without (P-) isoflavones. Steers were provided a basal diet with fescue seed for 21 days, while isoflavones were orally administered daily. Following the trial, blood and rumen fluid were collected for metabolite analysis. Metabolites were extracted and then analyzed by UPLC-MS. The MAVEN program was implemented to identify metabolites for MetaboAnalyst 4.0 and SAS 9.4 statistical analysis. Seven differentially abundant metabolites were identified in serum by isoflavone treatment, and eleven metabolites in the rumen due to seed type (p < 0.05). Pathways affected by treatments were related to amino acid and nucleic acid metabolism in both rumen fluid and serum (p < 0.05). Therefore, metabolism was altered by fescue seed in the rumen; however, isoflavones altered metabolism systemically to potentially mitigate detrimental effects of seed and improve animal performance.


Asunto(s)
Isoflavonas/administración & dosificación , Metaboloma/efectos de los fármacos , Rumen/efectos de los fármacos , Suero/metabolismo , Aminoácidos/metabolismo , Alimentación Animal/microbiología , Alimentación Animal/envenenamiento , Animales , Bovinos , Cromatografía Liquida , Suplementos Dietéticos , Endófitos/fisiología , Alcaloides de Claviceps/toxicidad , Ergotismo/tratamiento farmacológico , Festuca/microbiología , Festuca/envenenamiento , Ácidos Nucleicos/metabolismo , Intoxicación por Plantas/veterinaria , Semillas/envenenamiento , Espectrometría de Masas en Tándem
17.
Transl Anim Sci ; 4(4): txaa197, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33269340

RESUMEN

Gestating ewes consuming ergot alkaloids, from endophyte-infected (E+) tall fescue seed, suffer from intrauterine growth restriction and produce smaller lambs. Arginine (Arg) supplementation has been shown to increase birth weight and oral citrulline (Cit) administration is reported to increase arginine concentrations. Two experiments were conducted to: 1) evaluate if oral supplementation with Cit or water, to ewes consuming E+ fescue seed, increases lamb birth weight and 2) determine the effectiveness of Cit and citrulline:malate as an oral drench and elevating circulating levels of Cit to determine levels and dose frequency. In experiment 1, gestating Suffolk ewes (n = 10) were assigned to one of two treatments [oral drench of citrulline-malate 2:1 (CITM; 81 mg/kg/d of citrulline) or water (TOX)] to start on d 86 of gestation and continued until parturition. Ewes on CITM treatment had decreased (P < 0.05) plasma Arg and Cit concentrations during gestation. At birth, lambs from CITM ewes had reduced (P < 0.05) crude fat and total fat but did not differ (P > 0.05) in birth weight from lambs born to TOX ewes. In experiment 2, nonpregnant Suffolk ewes (n = 3) were assigned to either oral citrulline (CIT; 81 mg/kg/d), citrulline-malate 2:1 (CITM; 81 mg/kg/d of citrulline), or water (CON) drench in a Latin Square design for a treatment period of 4 d with a washout period of 3 d. On d 4, blood samples were collected at 0, 0.5, 1, 2, 3, 4, 6, 8, 10, 12, and 18 h post drench. Oral drenching of CIT and CITM increased (P < 0.0001) Cit concentrations within 2 h and levels remained elevated for 6 h. Apparent half-life of elimination for CIT and CITM were 8.484 and 10.392 h, respectively. Our results show that lamb birth weight was not altered with a single oral drench of citrulline-malate; however, lamb body composition was altered. The level and frequency of citrulline dosing may need to be greater in order to observe consistent elevation of Cit/Arg concentrations to determine its effectiveness in mitigating fescue toxicosis.

18.
Animals (Basel) ; 10(12)2020 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-33287449

RESUMEN

Endophyte-infected tall fescue (E+) produces ergovaline and ergovalinine, which are mycotoxins that act as dopamine agonists to suppress prolactin and induce vasoconstriction. The experiment was designed as a 3 × 2 × 2 factorial with DRD2 genotype (AA, AG, GG), fescue seed (endophyte-free, E- or endophyte-infected, E+), stage of gestation (MID, d (day) 35-85; LATE, d 86-parturition) and all interactions in the model. Pregnant Suffolk ewes (n = 60) were stratified by genotype and fed E+ or E- seed in a total mixed ration according to treatment assignment. Serum prolactin concentrations were lower (p < 0.05) in ewes fed E+ seed but did not differ by maternal DRD2 genotype or two-way interaction. Lamb birth weight was lower (p < 0.05) in ewes fed E+ seed in last trimester. Pre-weaning growth rate, milk production and total weaning weight was reduced (p < 0.05) in ewes fed E+ fescue seed during MID and LATE gestation. Ingestion of ergovaline/ergovalinine in last trimester reduces lamb birth weight; however, lamb growth rate, milk production and total weaning weight are reduced in all ewes fed E+ during mid and last trimester.

19.
J Anim Sci ; 98(12)2020 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-33188392

RESUMEN

Ergot alkaloids can interact with several serotonin (5-hydroxytryptamine [5-HT]) receptors provoking many physiological responses. However, it is unknown whether ergot alkaloid consumption influences 5-HT or its metabolites. Thus, two experiments were performed to evaluate the effect of ergot alkaloid feeding on 5-HT metabolism. In exp. 1, 12 Holstein steers (260 ± 3 kg body weight [BW]) were used in a completely randomized design. The treatments were the dietary concentration of ergovaline: 0, 0.862, and 1.282 mg/kg of diet. The steers were fed ad libitum, kept in light and temperature cycles mimicking the summer, and had blood sampled before and 15 d after receiving the treatments. The consumption of ergot alkaloids provoked a linear decrease (P = 0.004) in serum 5-HT. However, serum 5-hydroxytryptophan and 5-hydroxyindoleacetic acid did not change (P > 0.05) between treatments. In exp. 2, four ruminally cannulated Holstein steers (318 ± 3 kg BW) were used in a 4 × 4 Latin square design to examine the difference between seed sources on 5-HT metabolism. Treatments were: control-tall fescue seeds free of ergovaline, KY 32 seeds (L42-16-2K32); 5Way-endophyte-infected seeds, 5 way (L152-11-1739); KY31-endophyte-infected seeds, KY 31 (M164-16-SOS); and Millennium-endophyte-infected seeds, 3rd Millennium (L108-11-76). The endophyte-infected seed treatments were all adjusted to provide an ergovaline dosage of 15 µg/kg BW. The basal diet provided 1.5-fold the net energy requirement for maintenance. The seed treatments were dosed directly into the rumen before feeding. The experiment lasted 84 d and was divided into four periods. In each period, the steers received seeds for 7 d followed by a 14-d washout. Blood samples were collected on day 0 (baseline) and day 7 for evaluating the treatment response in each period. A 24 h urine collection was performed on day 7. Similar to exp. 1, serum 5-HT decreased (P = 0.008) with the consumption of all endophyte-infected seed treatments. However, there was no difference (P > 0.05) between the infected seeds. The urinary excretion of 5-hydroxyindoleacetic acid in the urine was not affected (P > 0.05) by the presence of ergot alkaloids. In conclusion, the consumption of ergot alkaloids decreases serum 5-HT with no difference between the source of endophyte-infected seeds in the bovine.


Asunto(s)
Alcaloides de Claviceps , Festuca , Alimentación Animal/análisis , Animales , Bovinos , Poaceae , Rumen , Serotonina
20.
Animals (Basel) ; 10(10)2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33053893

RESUMEN

Weaned lambs (n = 82), born to ewes fed endophyte-free (E-) or endophyte-infected (E+; 1.77 mg hd-1 d-1 ergovaline + ergovalinine) tall fescue seed from d 35 to 85 of gestation (MID) and/or d 86 of gestation to parturition (LATE), were used to examine how ergot alkaloid exposure during fetal development altered subsequent puberty attainment or carcass quality. Lambs were weaned at 75 d of age and separated by sex to assess puberty in ewe lambs (n = 39) and to evaluate growth, carcass and meat quality in wethers (n = 43). Data were analyzed with maternal fescue treatment, stage of gestation, and two-way interaction in the model. Age at puberty tended (P = 0.06) to be longer for ewe lambs born to dams fed E+ fescue during LATE gestation versus those fed E-. Post-weaning average daily gain tended to be higher (P = 0.07) for wether lambs born to dams fed E+ fescue seed during MID gestation compared to E-. Exposure to ergot alkaloids during fetal growth altered (P < 0.10) longissimus muscle weight and color, lipid deposition, fatty acid composition, and shear force values of semimembranosus muscle in wether lambs. These results indicate that exposure to ergot alkaloids in utero does alter subsequent post-weaning puberty attainment and body composition in offspring.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA