Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(39): 53186-53194, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39312628

RESUMEN

Monolayer semiconducting transition-metal dichalcogenides (S-TMDs) have been extensively studied as materials for next-generation optoelectronic devices due to their direct band gap and high exciton binding energy at room temperature. Under a superacid treatment of bis(trifluoromethane)sulfonimide (TFSI), sulfur-based TMDs such as MoS2 can emit strong photoluminescence (PL) with a photoluminescence quantum yield (PLQY) approaching unity. However, the magnitude of PL enhancement varies by more than 2 orders of magnitude in published reports. A major culprit behind the discrepancy is sulfur-based TMD's sensitivity to above-bandgap photostimulation. Here, we present a detailed study of how TFSI-treated MoS2 reacts to photostimulation with increasing PL occurring hours after continuous or pulsed laser exposure. The PL of TFSI-treated MoS2 is enhanced up to 74 times its initial intensity after 5 h of continuous exposure to 532 nm laser light. Photostimulation also enhances the PL of untreated MoS2 but with a much smaller enhancement. Caution should be taken when probing MoS2 PL spectra, as above-bandgap light can alter the resulting intensity and peak wavelength of the emission over time. The presence of air is verified to play a key role in the photostimulated enhancement effect. Additionally, the rise of PL intensity is mirrored by an increase in measured carrier lifetime of up to ∼400 ps, consistent with the suppression of nonradiative pathways. This work demonstrates why variations in PL intensity are observed across samples and provides an understanding of the changes in carrier lifetimes to better engineer next-generation optoelectronic devices.

3.
Nature ; 424(6946): 291-3, 2003 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-12867975

RESUMEN

It has been a long-standing goal to detect the effects of quantum mechanics on a macroscopic mechanical oscillator. Position measurements of an oscillator are ultimately limited by quantum mechanics, where 'zero-point motion' fluctuations in the quantum ground state combine with the uncertainty relation to yield a lower limit on the measured average displacement. Development of a position transducer, integrated with a mechanical resonator, that can approach this limit could have important applications in the detection of very weak forces, for example in magnetic resonance force microscopy and a variety of other precision experiments. One implementation that might allow near quantum-limited sensitivity is to use a single electron transistor (SET) as a displacement sensor: the exquisite charge sensitivity of the SET at cryogenic temperatures is exploited to measure motion by capacitively coupling it to the mechanical resonator. Here we present the experimental realization of such a device, yielding an unequalled displacement sensitivity of 2 x 10(-15) m x Hz(-1/2) for a 116-MHz mechanical oscillator at a temperature of 30 mK-a sensitivity roughly a factor of 100 larger than the quantum limit for this oscillator.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA