Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Radiat Res ; 65(4): 482-490, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38874522

RESUMEN

Recently, biomolecular condensates formed through liquid-liquid phase separation have been widely reported to regulate key intracellular processes involved in cell biology and pathogenesis. BRD4 is a nuclear protein instrumental to the establishment of phase-separated super-enhancers (SEs) to direct the transcription of important genes. We previously observed that protein droplets of BRD4 became hydrophobic as their size increase, implying an ability of SEs to limit the ionization of water molecules by irradiation. Here, we aim to establish if SEs confer radiation resistance in cancer cells. We established an in vitro DNA damage assay that measures the effect of radicals provoked by the Fenton reaction on DNA integrity. This revealed that DNA damage was markedly reduced when BRD4 underwent phase separation with DNA. Accordingly, co-focal imaging analyses revealed that SE foci and DNA damage foci are mutually exclusive in irradiated cells. Lastly, we observed that the radioresistance of cancer cells was significantly reduced when irradiation was combined with ARV-771, a BRD4 de-stabilizer. Our data revealed the existence of innately radioresistant genomic regions driven by phase separation in cancer cells. The disruption of these phase-separated components enfolding genomic DNA may represent a novel strategy to augment the effects of radiotherapy.


Asunto(s)
Daño del ADN , Tolerancia a Radiación , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , ADN/efectos de la radiación , ADN/química , Línea Celular Tumoral , Proteínas de Ciclo Celular/metabolismo , Elementos de Facilitación Genéticos , Genoma Humano , Proteínas Nucleares/metabolismo , Proteínas que Contienen Bromodominio
2.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731414

RESUMEN

Consumers are concerned about employing green processing technologies and natural ingredients in different manufacturing sectors to achieve a "clean label" standard for products and minimize the hazardous impact of chemical ingredients on human health and the environment. In this study, we investigated the effects of gelatinized starch dispersions (GSDs) prepared from six plant sources (indica and japonica rice, wheat, corn, potatoes, and sweet potatoes) on the formulation and stability of oil-in-water (O/W) emulsions. The effect of gelatinization temperature and time conditions of 85-90 °C for 20 min on the interfacial tension of the two phases was observed. Emulsification was performed using a primary homogenization condition of 10,000 rpm for 5 min, followed by high-pressure homogenization at 100 MPa for five cycles. The effects of higher oil weight fractions (15-25% w/w) and storage stability at different temperatures for four weeks were also evaluated. The interfacial tension of all starch GSDs with soybean oil decreased compared with the interfacial tension between soybean oil and water as a control. The largest interfacial tension reduction was observed for the GSD from indica rice. Microstructural analysis indicated that the GSDs stabilized the O/W emulsion by coating oil droplets. Emulsions formulated using a GSD from indica rice were stable during four weeks of storage with a volume mean diameter (d4,3) of ~1 µm, minimal viscosity change, and a negative ζ-potential.


Asunto(s)
Emulsiones , Aceite de Soja , Almidón , Agua , Emulsiones/química , Almidón/química , Agua/química , Aceite de Soja/química , Oryza/química , Gelatina/química , Temperatura , Tensión Superficial , Tamaño de la Partícula
3.
Front Cell Dev Biol ; 12: 1340089, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38385024

RESUMEN

Electromagnetic fields (EMFs) have received widespread attention as effective, noninvasive, and safe therapies across a range of clinical applications for bone disorders. However, due to the various frequencies of devices, their effects on tissues/cells are vary, which has been a bottleneck in understanding the effects of EMFs on bone tissue. Here, we developed an in vivo model system using zebrafish scales to investigate the effects of extremely low-frequency EMFs (ELF-EMFs) on fracture healing. Exposure to 10 millitesla (mT) of ELF-EMFs at 60 Hz increased the number of both osteoblasts and osteoclasts in the fractured scale, whereas 3 or 30 mT did not. Gene expression analysis revealed that exposure to 10 mT ELF-EMFs upregulated wnt10b and Wnt target genes in the fractured scale. Moreover, ß-catenin expression was enhanced by ELF-EMFs predominantly at the fracture site of the zebrafish scale. Inhibition of Wnt/ß-catenin signaling by IWR-1-endo treatment reduced both osteoblasts and osteoclasts in the fractured scale exposed to ELF-EMFs. These results suggest that ELF-EMFs promote both osteoblast and osteoclast activity through activation of Wnt/ß-catenin signaling in fracture healing. Our data provide in vivo evidence that ELF-EMFs generated with a widely used commercial AC power supply have a facilitative effect on fracture healing.

4.
Foods ; 13(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38254594

RESUMEN

This study aimed to analyze the printability of corn-based dough during screw-based three-dimensional (3D) food printing (3DFP) by relating its rheological and mechanical properties to its screw-based 3DFP performance, with the objective of providing insights into the utilization of corn-based dough to produce 3D-printed foods. Screw-based 3DFP was performed using seven corn-based doughs with different nixtamalized corn flour (NCF) and water contents. Afterward, their rheological and mechanical properties were analyzed and associated with their screw-based 3DFP performance. The results showed that stable printability was obtained within a specific range of NCF content in the dough (30-32.5 wt%). Below this range, the 3D-printed foods flattened, while above it, the extrudability of the dough was affected. The printability of the dough was influenced by different rheological and mechanical properties, depending on the stage of the screw-based 3DFP process. During the extrusion stage, the loss tangent at nozzle strain, yield stress, apparent viscosity, and adhesiveness mainly affected the extrudability of the dough. In contrast, the loss tangent at minimum strain, elastic modulus, Young's modulus, and hardness influenced the self-supporting stage. Therefore, it is important to find a balance between all of these properties, where stable extrudability and self-supporting of the 3D structure are achieved.

5.
J Sci Food Agric ; 104(6): 3498-3506, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38145927

RESUMEN

BACKGROUND: This study evaluates the effect of mechanical properties on the in vitro dynamic gastrointestinal digestion of hydrogels containing starch (HCSs) as a model for studying the nutrient digestibility of solid foods. It provides a useful theoretical basis for the processing of specific foods. RESULT: Four types of HCSs with two levels of fracture stress (17.4-20.9 kPa and 55.5-57.6 kPa) and two levels of fracture strain (25.4-28.5% and 53.7-57.4%) were prepared. For these HCSs, the degree of gastric disintegration of hydrogels reduced significantly when fracture strain exceeded 30% (P < 0.05). The gastric emptying of HCS particles was also affected by mechanical properties. For example, even at the same level of fracture stress (ca. 20 kPa), the dry solids retention ratio decreased markedly from 0.90 to 0.43 with a decrease in fracture strain from 53.7% to 25.4% (P < 0.05). For the starch hydrolysis of HCSs after gastric digestion, more than 70% of starch in the particles of all types of HCSs emptied did not undergo digestion. The starch hydrolysis of HCSs during small intestinal digestion was also influenced by their mechanical properties. Fracture strains of HCSs, rather than their fracture stress, affected starch digestibility in hydrogels. CONCLUSION: The gastric disintegration, the gastric emptying, and the starch hydrolysis of HCSs are suppressed when fracture strain exceeded 30%. Even with the amount of nutritional components contained in hydrogels being the same, the in vitro gastrointestinal digestion behavior of HCSs depends on their mechanical properties. This behavior has the potential to be used in the design of processed foods with controlled bioaccessibility. © 2023 Society of Chemical Industry.


Asunto(s)
Hidrogeles , Almidón , Almidón/química , Digestión , Estómago , Hidrólisis
6.
J Sci Food Agric ; 104(2): 809-817, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37743408

RESUMEN

BACKGROUND: There is limited knowledge regarding digestion and absorption of nutrients after cooked marinated meat is ingested. Most of the previous studies on food gastric digestion have focused on chemical digestion and did not reflect upon physical digestion driven by peristalsis. In the present study, we examined the effects of marinating beef in lemon juice on gastric digestibility using a human gastric digestion simulator (GDS) that mimics peristaltic motion called antral contraction waves. RESULTS: Beef thigh slices were marinated in 100% lemon juice for 1 h and then grilled; an image of a stained tissue sample revealed that muscle tissue contraction (i.e. that usually occurs upon cooking) was suppressed. The measurement of physical properties using a rheometer and texture analyzer showed that the meat marinated in lemon juice had a soft texture. In vitro digestion experiments using the GDS revealed that the extent of both physical digestion driven by peristalsis and chemical digestion catalyzed by digestive enzymes was enhanced by the lemon juice marinade. CONCLUSION: The results of the present study suggest that marinating beef in lemon juice affects nutrient digestibility. An integrated evaluation of tissue structure, physical properties and GDS digestion to analyze meat digestion would enhance our understanding of the effects of seasoning and cooking methods on meat. © 2023 Society of Chemical Industry.


Asunto(s)
Culinaria , Carne , Animales , Bovinos , Humanos , Culinaria/métodos , Carne/análisis , Estómago , Nutrientes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA