Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cancers (Basel) ; 16(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38893258

RESUMEN

High expression of the receptor tyrosine kinase (RTK) insulin-like growth factor-1 receptor (IGF1R) and RTK mutations are associated with high-risk/worse prognosis in multiple myeloma (MM). Combining the pIGF1R/pINSR inhibitor linsitinib with the proteasome inhibitor (PI) bortezomib seemed promising in a clinical trial, but IGF1R expression was not associated with therapy response. Because the oncogenic impact of IGF1R mutations is so far unknown, we investigated the functional impact of IGF1R mutations on survival signaling, viability/proliferation and survival response to therapy. We transfected four human myeloma cell lines (HMCLs) with IGF1RWT, IGF1RD1146N and IGF1RN1129S (Sleeping Beauty), generated CRISPR-Cas9 IGF1R knockouts in the HMCLs U-266 (IGF1RWT) and L-363 (IGF1RD1146N) and tested the anti-MM activity of linsitinib alone and in combination with the second-generation PI carfilzomib in seven HMCLs. IGF1R knockout entailed reduced proliferation. Upon IGF1R overexpression, survival signaling was moderately increased in all HCMLs and slightly affected by IGF1RN1129S in one HMCL, whereby the viability remained unaffected. Expression of IGF1RD1146N reduced pIGF1R-Y1135, especially under serum reduction, but did not impact downstream signaling. Linsitinib and carfilzomib showed enhanced anti-myeloma activity in six out of seven HMCL irrespective of the IGF1R mutation status. In conclusion, IGF1R mutations can impact IGF1R activation and/or downstream signaling, and a combination of linsitinib with carfilzomib might be a suitable therapeutic approach for MM patients potentially responsive to IGF1R blockade.

2.
J Exp Bot ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900822

RESUMEN

Nitrogen (N) is a vital nutrient and an essential component of biological macromolecules, such as nucleic acids and proteins. Microorganisms represent major drivers of N-cycling processes in all ecosystems, including the soil and plant environment. The availability of N is a major growth limiting factor for plants and it is significantly affected by the plant microbiome. Plants and microorganisms form complex interaction networks resulting in molecular signaling, nutrient exchange and other distinct metabolic responses. In these networks, microbial partners influence growth and N use efficiency of plants either positively or negatively. Harnessing the beneficial effects of specific players within crop microbiomes is a promising strategy to counteract the emerging threats for human and planetary health due to the overuse of industrial N fertilizers. However, in addition to N-providing activities (e.g. the well-known symbiosis of legumes and Rhizobium bacteria), other plant-microorganism interactions must be considered to obtain a complete picture of how microbial driven N-transformations might affect plant nutrition. For this, we review recent insights into the tight interplay between plants and N-cycling microorganisms focusing on microbial N-transformation processes representing N sources and sinks that ultimately shape the plant N acquisition.

3.
Nat Commun ; 15(1): 3143, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38609359

RESUMEN

Largely removed from anthropogenic delivery of nitrogen (N), Antarctica has notably low levels of nitrogen. Though our understanding of biological sources of ammonia have been elucidated, the microbial drivers of nitrate (NO3-) cycling in coastal Antarctica remains poorly understood. Here, we explore microbial N cycling in coastal Antarctica, unraveling the biological origin of NO3- via oxygen isotopes in soil and lake sediment, and through the reconstruction of 1968 metagenome-assembled genomes from 29 microbial phyla. Our analysis reveals the metabolic potential for microbial N2 fixation, nitrification, and denitrification, but not for anaerobic ammonium oxidation, signifying a unique microbial N-cycling dynamic. We identify the predominance of complete ammonia oxidizing (comammox) Nitrospira, capable of performing the entire nitrification process. Their adaptive strategies to the Antarctic environment likely include synthesis of trehalose for cold stress, high substrate affinity for resource utilization, and alternate metabolic pathways for nutrient-scarce conditions. We confirm the significant role of comammox Nitrospira in the autotrophic, nitrification process via 13C-DNA-based stable isotope probing. This research highlights the crucial contribution of nitrification to the N budget in coastal Antarctica, identifying comammox Nitrospira clade B as a nitrification driver.


Asunto(s)
Amoníaco , Nitrificación , Regiones Antárticas , Respuesta al Choque por Frío , Nitrógeno
4.
Diabetologia ; 67(7): 1368-1385, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38503901

RESUMEN

AIMS/HYPOTHESIS: Protein kinase CK2 acts as a negative regulator of insulin expression in pancreatic beta cells. This action is mainly mediated by phosphorylation of the transcription factor pancreatic and duodenal homeobox protein 1 (PDX1). In pancreatic alpha cells, PDX1 acts in a reciprocal fashion on glucagon (GCG) expression. Therefore, we hypothesised that CK2 might positively regulate GCG expression in pancreatic alpha cells. METHODS: We suppressed CK2 kinase activity in αTC1 cells by two pharmacological inhibitors and by the CRISPR/Cas9 technique. Subsequently, we analysed GCG expression and secretion by real-time quantitative RT-PCR, western blot, luciferase assay, ELISA and DNA pull-down assays. We additionally studied paracrine effects on GCG secretion in pseudoislets, isolated murine islets and human islets. In vivo, we examined the effect of CK2 inhibition on blood glucose levels by systemic and alpha cell-specific CK2 inhibition. RESULTS: We found that CK2 downregulation reduces GCG secretion in the murine alpha cell line αTC1 (e.g. from 1094±124 ng/l to 459±110 ng/l) by the use of the CK2-inhibitor SGC-CK2-1. This was due to a marked decrease in Gcg gene expression through alteration of the binding of paired box protein 6 (PAX6) and transcription factor MafB to the Gcg promoter. The analysis of the underlying mechanisms revealed that both transcription factors are displaced by PDX1. Ex vivo experiments in isolated murine islets and pseudoislets further demonstrated that CK2-mediated reduction in GCG secretion was only slightly affected by the higher insulin secretion after CK2 inhibition. The kidney capsule transplantation model showed the significance of CK2 for GCG expression and secretion in vivo. Finally, CK2 downregulation also reduced the GCG secretion in islets isolated from humans. CONCLUSIONS/INTERPRETATION: These novel findings not only indicate an important function of protein kinase CK2 for proper GCG expression but also demonstrate that CK2 may be a promising target for the development of novel glucose-lowering drugs.


Asunto(s)
Quinasa de la Caseína II , Células Secretoras de Glucagón , Glucagón , Proteínas de Homeodominio , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/genética , Animales , Glucagón/metabolismo , Ratones , Humanos , Células Secretoras de Glucagón/metabolismo , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Transactivadores/metabolismo , Transactivadores/genética , Masculino , Línea Celular , Insulina/metabolismo
6.
ISME Commun ; 4(1): ycad017, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38317822

RESUMEN

The most abundant known nitrite-oxidizing bacteria in the marine water column belong to the phylum Nitrospinota. Despite their importance in marine nitrogen cycling and primary production, there are only few cultured representatives that all belong to the class Nitrospinia. Moreover, although Nitrospinota were traditionally thought to be restricted to marine environments, metagenome-assembled genomes have also been recovered from groundwater. Over the recent years, metagenomic sequencing has led to the discovery of several novel classes of Nitrospinota (UBA9942, UBA7883, 2-12-FULL-45-22, JACRGO01, JADGAW01), which remain uncultivated and have not been analyzed in detail. Here, we analyzed a nonredundant set of 98 Nitrospinota genomes with focus on these understudied Nitrospinota classes and compared their metabolic profiles to get insights into their potential role in biogeochemical element cycling. Based on phylogenomic analysis and average amino acid identities, the highly diverse phylum Nitrospinota could be divided into at least 33 different genera, partly with quite distinct metabolic capacities. Our analysis shows that not all Nitrospinota are nitrite oxidizers and that members of this phylum have the genomic potential to use sulfide and hydrogen for energy conservation. This study expands our knowledge of the phylogeny and potential ecophysiology of the phylum Nitrospinota and offers new avenues for the isolation and cultivation of these elusive bacteria.

7.
ISME J ; 17(10): 1639-1648, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37443340

RESUMEN

Dissimilatory nitrate reduction to ammonia (DNRA) is a common biochemical process in the nitrogen cycle in natural and man-made habitats, but its significance in wastewater treatment plants is not well understood. Several ammonifying Trichlorobacter strains (former Geobacter) were previously enriched from activated sludge in nitrate-limited chemostats with acetate as electron (e) donor, demonstrating their presence in these systems. Here, we isolated and characterized the new species Trichlorobacter ammonificans strain G1 using a combination of low redox potential and copper-depleted conditions. This allowed purification of this DNRA organism from competing denitrifiers. T. ammonificans is an extremely specialized ammonifier, actively growing only with acetate as e-donor and carbon source and nitrate as e-acceptor, but H2 can be used as an additional e-donor. The genome of G1 does not encode the classical ammonifying modules NrfAH/NrfABCD. Instead, we identified a locus encoding a periplasmic nitrate reductase immediately followed by an octaheme cytochrome c that is conserved in many Geobacteraceae species. We purified this octaheme cytochrome c protein (TaNiR), which is a highly active dissimilatory ammonifying nitrite reductase loosely associated with the cytoplasmic membrane. It presumably interacts with two ferredoxin subunits (NapGH) that donate electrons from the menaquinol pool to the periplasmic nitrate reductase (NapAB) and TaNiR. Thus, the Nap-TaNiR complex represents a novel type of highly functional DNRA module. Our results indicate that DNRA catalyzed by octaheme nitrite reductases is a metabolic feature of many Geobacteraceae, representing important community members in various anaerobic systems, such as rice paddy soil and wastewater treatment facilities.


Asunto(s)
Amoníaco , Nitratos , Humanos , Nitratos/metabolismo , Oxidación-Reducción , Citocromos c/metabolismo , Nitrato Reductasas/química , Nitrato Reductasas/genética , Nitrato Reductasas/metabolismo , Desnitrificación
8.
Biology (Basel) ; 12(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37372085

RESUMEN

The expression levels of various genes involved in human spermatogenesis are influenced by microRNAs (miRNAs), specifically microRNA-23a/b-3p. While certain genes are essential for spermatogenesis and male germ cell function, the regulation of their expression remains unclear. This study aimed to investigate whether microRNA-23a/b-3p targets genes involved in spermatogenesis and the impact of this targeting on the expression levels of these genes in males with impaired fertility. In-silico prediction and dual-luciferase assays were used to determine the potential connections between microRNA-23a/b-3p overexpression and reduced expression levels of 16 target genes. Reverse transcription-quantitative PCR (RT-qPCR) was conducted on 41 oligoasthenozoospermic men receiving infertility treatment and 41 age-matched normozoospermic individuals to verify the lower expression level of target genes. By employing dual-luciferase assays, microRNA-23a-3p was found to directly target eight genes, namely NOL4, SOX6, GOLGA6C, PCDHA9, G2E3, ZNF695, CEP41, and RGPD1, while microRNA-23b-3p directly targeted three genes, namely SOX6, GOLGA6C, and ZNF695. The intentional alteration of the microRNA-23a/b binding site within the 3' untranslated regions (3'UTRs) of the eight genes resulted in the loss of responsiveness to microRNA-23a/b-3p. This confirmed that NOL4, SOX6, GOLGA6C, PCDHA9, and CEP41 are direct targets for microRNA-23a-3p, while NOL4, SOX6, and PCDHA9 are direct targets for microRNA-23b-3p. The sperm samples of oligoasthenozoospermic men had lower expression levels of target genes than age-matched normozoospermic men. Correlation analysis indicated a positive correlation between basic semen parameters and lower expression levels of target genes. The study suggests that microRNA-23a/b-3p plays a significant role in spermatogenesis by controlling the expression of target genes linked to males with impaired fertility and has an impact on basic semen parameters.

9.
FEMS Microbiol Lett ; 3702023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37081766

RESUMEN

The genus Nitrospira represents the dominant nitrite-oxidizing clade in most wastewater treatment plants (WWTPs) globally, and several Nitrospira strains have been isolated from activated sludge. Using a pre-enrichment strategy with alternating nitrifying and denitrifying conditions, followed by incubation at elevated temperatures, we isolated a novel Nitrospira species, named Nitrospira tepida. This moderately thermophilic species with optimal growth between 37 and 45°C is only distantly related to other Nitrospira and forms a novel lineage VII within the genus, together with few environmental 16S rRNA gene sequences predominantly detected in thermal wastewater or oxygen-limited systems. Genomic and physiological analyses revealed remarkable differences between N. tepida and two other isolates previously obtained from the same WWTP, suggesting niche differentiation between these nitrite oxidizers. N. tepida grows in aggregates, and tolerates nitrite and nitrate concentrations of up to 20 mM and 40 mM, respectively. The Km value for nitrite of N. tepida is 77 ± 26 µM. In summary, this novel Nitrospira lineage seems to be well-adapted for wastewater treatment processes at elevated temperatures and limited aeration, conditions that potentially reduce operational costs of such systems.


Asunto(s)
Nitritos , Aguas del Alcantarillado , ARN Ribosómico 16S/genética , Temperatura , Oxidación-Reducción , Bacterias/genética , Nitrificación , Amoníaco , Filogenia
10.
Microbiol Resour Announc ; 12(4): e0007823, 2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-36943084

RESUMEN

Here, we present the complete genome sequence of Nitrospina watsonii 347, a nitrite-oxidizing bacterium isolated from the Black Sea at a depth of 100 m. The genome has a length of 3,011,914 bp with 2,895 predicted coding sequences. Its predicted metabolism is similar to that of Nitrospina gracilis with differences in defense against reactive oxygen species.

11.
Environ Microbiol ; 24(4): 2059-2077, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35229435

RESUMEN

Chemolithoautotrophic production of nitrate is accomplished by the polyphyletic functional group of nitrite-oxidizing bacteria (NOB). A widely distributed and important NOB clade in nitrogen removal processes at low temperatures is Nitrotoga, which however remains understudied due to the scarcity of cultivated representatives. Here, we present physiological, ultrastructural and genomic features of Nitrotoga strains from various habitats, including the first marine species enriched from an aquaculture system. Immunocytochemical analyses localized the nitrite-oxidizing enzyme machinery in the wide irregularly shaped periplasm, apparently without contact to the cytoplasmic membrane, confirming previous genomic data suggesting a soluble nature. Interestingly, in two strains we also observed multicellular complexes with a shared periplasmic space, which seem to form through incomplete cell division and might enhance fitness or survival. Physiological tests revealed differing tolerance limits towards dissolved inorganic nitrogen concentrations and confirmed the generally psychrotolerant nature of the genus. Moreover, comparative analysis of 15 Nitrotoga genomes showed, e.g. a unique gene repertoire of the marine strain that could be advantageous in its natural habitat and confirmed the lack of genes for assimilatory nitrite reduction in a strain found to require ammonium for growth. Overall, these novel insights largely broaden our knowledge of Nitrotoga and elucidate the metabolic variability, physiological limits and thus potential ecological roles of this group of nitrite oxidizers.


Asunto(s)
Gallionellaceae , Nitritos , Bacterias/metabolismo , Frío , Nitratos/metabolismo , Nitritos/metabolismo , Oxidación-Reducción
12.
ISME J ; 16(2): 400-411, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34363004

RESUMEN

The symbiont "Candidatus Aquarickettsia rohweri" infects a diversity of aquatic hosts. In the threatened Caribbean coral, Acropora cervicornis, Aquarickettsia proliferates in response to increased nutrient exposure, resulting in suppressed growth and increased disease susceptibility and mortality of coral. This study evaluated the extent, as well as the ecology and evolution of Aquarickettsia infecting threatened corals, Ac. cervicornis, and Ac. palmata and their hybrid ("Ac. prolifera"). Aquarickettsia was found in all acroporids, with coral host and geographic location impacting the infection magnitude. Phylogenomic and genome-wide single-nucleotide variant analysis of Aquarickettsia found phylogenetic clustering by geographic region, not by coral taxon. Analysis of Aquarickettsia fixation indices suggests multiple sequential infections of the same coral colony are unlikely. Furthermore, relative to other Rickettsiales species, Aquarickettsia is undergoing positive selection, with Florida populations experiencing greater positive selection relative to other Caribbean locations. This may be due in part to Aquarickettsia proliferating in response to greater nutrient stress in Florida, as indicated by greater in situ replication rates in these corals. Aquarickettsia was not found to significantly codiversify with either the coral animal or the coral's algal symbiont (Symbiodinium "fitti"). Quantitative PCR analysis showed that gametes, larvae, recruits, and juveniles from susceptible, captive-reared coral genets were not infected with Aquarickettsia. Thus, horizontal transmission of Aquarickettsia via coral mucocytes or an unidentified host is more likely. The prevalence of Aquarickettsia in Ac. cervicornis and its high abundance in the Florida coral population suggests that coral disease mitigation efforts focus on preventing early infection via horizontal transmission.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/microbiología , Región del Caribe , Arrecifes de Coral , Filogenia , Rickettsiales
13.
mSystems ; 6(4): e0017321, 2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34402644

RESUMEN

Nitrite-oxidizing bacteria belonging to the genus Nitrospira mediate a key step in nitrification and play important roles in the biogeochemical nitrogen cycle and wastewater treatment. While these organisms have recently been shown to exhibit metabolic flexibility beyond their chemolithoautotrophic lifestyle, including the use of simple organic compounds to fuel their energy metabolism, the metabolic networks controlling their autotrophic and mixotrophic growth remain poorly understood. Here, we reconstructed a genome-scale metabolic model for Nitrospira moscoviensis (iNmo686) and used flux balance analysis to evaluate the metabolic networks controlling autotrophic and formatotrophic growth on nitrite and formate, respectively. Subsequently, proteomic analysis and [13C]bicarbonate and [13C]formate tracer experiments coupled to metabolomic analysis were performed to experimentally validate model predictions. Our findings corroborate that N. moscoviensis uses the reductive tricarboxylic acid cycle for CO2 fixation, and we also show that N. moscoviensis can indirectly use formate as a carbon source by oxidizing it first to CO2 followed by reassimilation, rather than direct incorporation via the reductive glycine pathway. Our study offers the first measurements of Nitrospira's in vivo central carbon metabolism and provides a quantitative tool that can be used for understanding and predicting their metabolic processes. IMPORTANCE Nitrospira spp. are globally abundant nitrifying bacteria in soil and aquatic ecosystems and in wastewater treatment plants, where they control the oxidation of nitrite to nitrate. Despite their critical contribution to nitrogen cycling across diverse environments, detailed understanding of their metabolic network and prediction of their function under different environmental conditions remains a major challenge. Here, we provide the first constraint-based metabolic model of Nitrospira moscoviensis representing the ubiquitous Nitrospira lineage II and subsequently validate this model using proteomics and 13C-tracers combined with intracellular metabolomic analysis. The resulting genome-scale model will serve as a knowledge base of Nitrospira metabolism and lays the foundation for quantitative systems biology studies of these globally important nitrite-oxidizing bacteria.

14.
Environ Microbiol ; 23(6): 3130-3148, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33876546

RESUMEN

Polysaccharide particles are important substrates and microhabitats for marine bacteria. However, substrate-specific bacterial dynamics in mixtures of particle types with different polysaccharide composition, as likely occurring in natural habitats, are undescribed. Here, we studied the composition, functional diversity and gene expression of marine bacterial communities colonizing a mix of alginate and pectin particles. Amplicon, metagenome and metatranscriptome sequencing revealed that communities on alginate and pectin particles significantly differed from their free-living counterparts. Unexpectedly, microbial dynamics on alginate and pectin particles were similar, with predominance of amplicon sequence variants (ASVs) from Tenacibaculum, Colwellia, Psychrobium and Psychromonas. Corresponding metagenome-assembled genomes (MAGs) expressed diverse alginate lyases, several colocalized in polysaccharide utilization loci. Only a single, low-abundant MAG showed elevated transcript abundances of pectin-degrading enzymes. One specific Glaciecola ASV dominated the free-living fraction, possibly persisting on particle-derived oligomers through different glycoside hydrolases. Elevated ammonium uptake and metabolism signified nitrogen as an important factor for degrading carbon-rich particles, whereas elevated methylcitrate and glyoxylate cycles suggested nutrient limitation in surrounding waters. The bacterial preference for alginate, whereas pectin primarily served as colonization scaffold, illuminates substrate-driven dynamics within mixed polysaccharide pools. These insights expand our understanding of bacterial niche specialization and the biological carbon pump in macroalgae-rich habitats.


Asunto(s)
Alginatos , Gammaproteobacteria , Bacterias/genética , Gammaproteobacteria/genética , Metagenoma , Pectinas
15.
ISME J ; 15(4): 1010-1024, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33188298

RESUMEN

The recent discovery of bacteria within the genus Nitrospira capable of complete ammonia oxidation (comammox) demonstrated that the sequential oxidation of ammonia to nitrate via nitrite can also be performed within a single bacterial cell. Although comammox Nitrospira exhibit a wide distribution in natural and engineered ecosystems, information on their physiological properties is scarce due to the limited number of cultured representatives. Additionally, most available genomic information is derived from metagenomic sequencing and high-quality genomes of Nitrospira in general are limited. In this study, we obtained a high (90%) enrichment of a novel comammox species, tentatively named "Candidatus Nitrospira kreftii", and performed a detailed genomic and physiological characterization. The complete genome of "Ca. N. kreftii" allowed reconstruction of its basic metabolic traits. Similar to Nitrospira inopinata, the enrichment culture exhibited a very high ammonia affinity (Km(app)_NH3 ≈ 0.040 ± 0.01 µM), but a higher nitrite affinity (Km(app)_NO2- = 12.5 ± 4.0 µM), indicating an adaptation to highly oligotrophic environments. Furthermore, we observed partial inhibition of ammonia oxidation at ammonium concentrations as low as 25 µM. This inhibition of "Ca. N. kreftii" indicates that differences in ammonium tolerance rather than affinity could potentially be a niche determining factor for different comammox Nitrospira.


Asunto(s)
Compuestos de Amonio , Nitrificación , Amoníaco , Bacterias/genética , Ecosistema , Nitritos , Oxidación-Reducción
16.
Water Res ; 185: 116288, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32810745

RESUMEN

Elevated concentrations of ammonium and methane in groundwater are often associated with microbiological, chemical and sanitary problems during drinking water production and distribution. To avoid their accumulation, raw water in the Netherlands and many other countries is purified by sand filtration. These drinking water filtration systems select for microbial communities that mediate the biodegradation of organic and inorganic compounds. In this study, the top layers and wall biofilm of a Dutch drinking water treatment plant (DWTP) were sampled from the filtration units of the plant over three years. We used high-throughput sequencing in combination with differential coverage and sequence composition-based binning to recover 56 near-complete metagenome-assembled genomes (MAGs) with an estimated completion of ≥70% and with ≤10% redundancy. These MAGs were used to characterize the microbial communities involved in the conversion of ammonia and methane. The methanotrophic microbial communities colonizing the wall biofilm (WB) and the granular material of the primary rapid sand filter (P-RSF) were dominated by members of the Methylococcaceae and Methylophilaceae. The abundance of these bacteria drastically decreased in the secondary rapid sand filter (S-RSF) samples. In all samples, complete ammonia-oxidizing (comammox) Nitrospira were the most abundant nitrifying guild. Clade A comammox Nitrospira dominated the P-RSF, while clade B was most abundant in WB and S-RSF, where ammonium concentrations were much lower. In conclusion, the knowledge obtained in this study contributes to understanding the role of microorganisms in the removal of carbon and nitrogen compounds during drinking water production. We furthermore found that drinking water treatment plants represent valuable model systems to study microbial community function and interaction.


Asunto(s)
Amoníaco , Purificación del Agua , Filtración , Metagenoma , Metano , Países Bajos , Nitrificación , Oxidación-Reducción , Arena
17.
ISME J ; 14(12): 2967-2979, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32709974

RESUMEN

Nitrite-oxidizing bacteria of the genus Nitrospira are key players of the biogeochemical nitrogen cycle. However, little is known about their occurrence and survival strategies in extreme pH environments. Here, we report on the discovery of physiologically versatile, haloalkalitolerant Nitrospira that drive nitrite oxidation at exceptionally high pH. Nitrospira distribution, diversity, and ecophysiology were studied in hypo- and subsaline (1.3-12.8 g salt/l), highly alkaline (pH 8.9-10.3) lakes by amplicon sequencing, metagenomics, and cultivation-based approaches. Surprisingly, not only were Nitrospira populations detected, but they were also considerably diverse with presence of members from  Nitrospira lineages I, II and IV. Furthermore, the ability of Nitrospira enrichment cultures to oxidize nitrite at neutral to highly alkaline pH of 10.5 was demonstrated. Metagenomic analysis of a newly enriched Nitrospira lineage IV species, "Candidatus Nitrospira alkalitolerans", revealed numerous adaptive features of this organism to its extreme environment. Among them were a sodium-dependent N-type ATPase and NADH:quinone oxidoreductase next to the proton-driven forms usually found in Nitrospira. Other functions aid in pH and cation homeostasis and osmotic stress defense. "Ca. Nitrospira alkalitolerans" also possesses group 2a and 3b [NiFe] hydrogenases, suggesting it can use hydrogen as alternative energy source. These results reveal how Nitrospira cope with strongly fluctuating pH and salinity conditions and expand our knowledge of nitrogen cycling in extreme habitats.


Asunto(s)
Bacterias , Nitritos , Bacterias/genética , Concentración de Iones de Hidrógeno , Metagenoma , Ciclo del Nitrógeno , Oxidación-Reducción
18.
J Evol Biol ; 33(9): 1180-1191, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32500538

RESUMEN

The evolutionary maintenance of sexual reproduction has long challenged biologists as the majority of species reproduce sexually despite inherent costs. Providing a general explanation for the evolutionary success of sex has thus proven difficult and resulted in numerous hypotheses. A leading hypothesis suggests that antagonistic species interaction can generate conditions selecting for increased sex due to the production of rare or novel genotypes that are beneficial for rapid adaptation to recurrent environmental change brought on by antagonism. To test this ecology-based hypothesis, we conducted experimental evolution in a predator (rotifer)-prey (algal) system by using continuous cultures to track predator-prey dynamics and in situ rates of sex in the prey over time and within replicated experimental populations. Overall, we found that predator-mediated fluctuating selection for competitive versus defended prey resulted in higher rates of genetic mixing in the prey. More specifically, our results showed that fluctuating population sizes of predator and prey, coupled with a trade-off in the prey, drove the sort of recurrent environmental change that could provide a benefit to sex in the prey, despite inherent costs. We end with a discussion of potential population genetic mechanisms underlying increased selection for sex in this system, based on our application of a general theoretical framework for measuring the effects of sex over time, and interpreting how these effects can lead to inferences about the conditions selecting for or against sexual reproduction in a system with antagonistic species interaction.


Asunto(s)
Evolución Biológica , Conducta Alimentaria , Rotíferos/genética , Selección Genética , Sexo , Animales , Chlamydomonas reinhardtii
19.
Sci Rep ; 10(1): 809, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31964928

RESUMEN

Ecological differentiation between strains of bacterial species is shaped by genomic and metabolic variability. However, connecting genotypes to ecological niches remains a major challenge. Here, we linked bacterial geno- and phenotypes by contextualizing pangenomic, exometabolomic and physiological evidence in twelve strains of the marine bacterium Alteromonas macleodii, illuminating adaptive strategies of carbon metabolism, microbial interactions, cellular communication and iron acquisition. In A. macleodii strain MIT1002, secretion of amino acids and the unique capacity for phenol degradation may promote associations with Prochlorococcus cyanobacteria. Strain 83-1 and three novel Pacific isolates, featuring clonal genomes despite originating from distant locations, have profound abilities for algal polysaccharide utilization but without detrimental implications for Ecklonia macroalgae. Degradation of toluene and xylene, mediated via a plasmid syntenic to terrestrial Pseudomonas, was unique to strain EZ55. Benzoate degradation by strain EC673 related to a chromosomal gene cluster shared with the plasmid of A. mediterranea EC615, underlining that mobile genetic elements drive adaptations. Furthermore, we revealed strain-specific production of siderophores and homoserine lactones, with implications for nutrient acquisition and cellular communication. Phenotypic variability corresponded to different competitiveness in co-culture and geographic distribution, indicating linkages between intraspecific diversity, microbial interactions and biogeography. The finding of "ecological microdiversity" helps understanding the widespread occurrence of A. macleodii and contributes to the interpretation of bacterial niche specialization, population ecology and biogeochemical roles.


Asunto(s)
Alteromonas/fisiología , Adaptación Biológica , Alteromonas/metabolismo , Variación Biológica Poblacional , Ecosistema , Ecotipo , Variación Genética , Genoma Bacteriano , Hierro/metabolismo , Océano Pacífico , Filogenia , Plásmidos , Polisacáridos/metabolismo , Prochlorococcus/fisiología , Agua de Mar/microbiología , Algas Marinas/metabolismo , Metabolismo Secundario
20.
Analyst ; 144(23): 7041-7048, 2019 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-31656968

RESUMEN

Some proteins such as catalase and glutamate dehydrogenase (GDH) are very sensitive to external factors such as irradiation or heat, which may cause inactivation. Since proteins are used in a wide field of applications, the entire activity has to be ensured during the whole process. By default, activity is measured by invasive and offline activity assays. To avoid the need for a time-consuming offline analysis, we developed an optical high-speed measurement technique, which may form the basis for the non-invasive inline control of enzyme processes e.g. in the textile or food industry. The technique is based on attenuation spectroscopy using a supercontinuum laser source in combination with multivariate data analysis, in particular partial least squares regression (PLSR). For verification of the approach, samples treated by various stresses were analyzed in parallel by activity assays and our new method. Applying this technique, we were able to determine the activity in the turbid catalase samples after heat treatment, addition of guanidine-HCl or irradiation with UV light by applying partial least squares regression. Furthermore, we demonstrate that the combination of broadband attenuation spectroscopy and PLSR enables us to determine also the activity of GDH in clear solutions after heat treatment.


Asunto(s)
Catalasa/análisis , Glutamato Deshidrogenasa/análisis , Animales , Catalasa/efectos de la radiación , Bovinos , Glutamato Deshidrogenasa/efectos de la radiación , Calefacción , Análisis de los Mínimos Cuadrados , Análisis Multivariante , Análisis de Componente Principal , Análisis Espectral/métodos , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA