Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 116
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
PeerJ ; 12: e18219, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39421416

RESUMEN

Sugar beets account for 30% of global sugar production each year, and their byproducts are an important source of bioethanol and animal feed. Sugar beet is an important cash crop in Inner Mongolia, China. To achieve high yields and sugar content, it is essential to supply nitrogen fertilizer in accordance with the growth characteristics of sugar beet, thereby enhancing the efficiency of nitrogen fertilizer utilization. A two-year experiment was carried out in the experimental field of the Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences. The impact of varying ratios of nitrogen-based fertilizer to topdressing on nitrate nitrogen and ammonium nitrogen levels in the 20-60 cm soil layer, as well as the activities of protease, urease, catalase, and sucrose in the 20-40 cm soil layer were investigated during the rapid leaf growth period and root and sugar growth period. Results indicated that different ratios of nitrogen-based fertilizer to topdressing significantly influenced the levels of nitrate nitrogen and ammonium nitrogen, and the activities of protease and urease in the 0-20 cm soil layer, with these effects diminishing as soil depth increased. The activities of catalase and sucrose were minimally impacted. Nitrogen was applied at 150 kg/ha during the growth period of sugar beet, according to the growth characteristics of sugar beet to maximize nitrogen utilization efficiency. Topdressing was completed with irrigation at the rapid growth stage. The nitrogen-based fertilizer to topdressing ratio of 6:4 resulted in optimal crop yield and sugar yield of sugar beet under shallow drip irrigation. Additionally, the activities of protease and urease in different soil treatments were significantly different, and the activities of protease and urease in the 0-40 cm soil layer were identified as useful soil physiological indicators for nitrogen utilization in sugar beet.


Asunto(s)
Riego Agrícola , Beta vulgaris , Fertilizantes , Nitrógeno , Suelo , Ureasa , Fertilizantes/análisis , Beta vulgaris/crecimiento & desarrollo , Nitrógeno/metabolismo , Suelo/química , Riego Agrícola/métodos , China , Ureasa/metabolismo , Catalasa/metabolismo , Péptido Hidrolasas/metabolismo
2.
J Neuroinflammation ; 21(1): 74, 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38528525

RESUMEN

The retinal pigment epithelium (RPE) maintains photoreceptor viability and function, completes the visual cycle, and forms the outer blood-retinal barrier (oBRB). Loss of RPE function gives rise to several monogenic retinal dystrophies and contributes to age-related macular degeneration. Retinal detachment (RD) causes separation of the neurosensory retina from the underlying RPE, disrupting the functional and metabolic relationships between these layers. Although the retinal response to RD is highly studied, little is known about how the RPE responds to loss of this interaction. RNA sequencing (RNA-Seq) was used to compare normal and detached RPE in the C57BL6/J mouse. The naïve mouse RPE transcriptome was compared to previously published RPE signature gene lists and from the union of these 14 genes (Bmp4, Crim1, Degs1, Gja1, Itgav, Mfap3l, Pdpn, Ptgds, Rbp1, Rnf13, Rpe65, Slc4a2, Sulf1 and Ttr) representing a core signature gene set applicable across rodent and human RPE was derived. Gene ontology enrichment analysis (GOEA) of the mouse RPE transcriptome identified expected RPE features and functions, such as pigmentation, phagocytosis, lysosomal and proteasomal degradation of proteins, and barrier function. Differentially expressed genes (DEG) at 1 and 7 days post retinal detachment (dprd) were defined as mRNA with a significant (padj≤0.05) fold change (FC) of 0.67 ≥ FC ≥ 1.5 in detached versus naïve RPE. The RPE transcriptome exhibited dramatic changes at 1 dprd, with 2297 DEG identified. The KEGG pathways and biological process GO groups related to innate immune responses were significantly enriched. Lipocalin 2 (Lcn2) and several chemokines were upregulated, while numerous genes related to RPE functions, such as pigment synthesis, visual cycle, phagocytosis, and tight junctions were downregulated at 1 dprd. The response was largely transient, with only 18 significant DEG identified at 7 dprd, including upregulation of complement gene C4b. Validation studies confirmed RNA-Seq results. Thus, the RPE quickly downregulates cell-specific functions and mounts an innate immune defense response following RD. Our data demonstrate that the RPE contributes to the inflammatory response to RD and may play a role in attraction of immune cells to the subretinal space.


Asunto(s)
Degeneración Macular , Desprendimiento de Retina , Ratones , Animales , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Desprendimiento de Retina/metabolismo , Retina/metabolismo , Degeneración Macular/metabolismo , Fagocitosis/genética , Receptores de Proteínas Morfogenéticas Óseas/metabolismo
3.
Colloids Surf B Biointerfaces ; 234: 113720, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38157763

RESUMEN

Wound healing involves multi-stages of physiological responses, including hemostasis, inflammation, cell proliferation, and tissue remodeling. Satisfying all demands throughout different stages remains a rarely addressed challenge. Here we introduce an innovative all-aqueous microfluidic printing technique for fabricating multifunctional bioactive microfibers, effectively contributing to all four phases of the healing process. The distinctive feature of the developed microfibers lies in their capacity to be printed in a free-form manner in the aqueous-two phase system (ATPS). This is achieved through interfacial coacervation between alkyl-chitosan and alginate, with enhanced structural integrity facilitated by simultaneous crosslinking with calcium ions and alginate. The all-aqueous printed microfibers exhibit exceptional performance in terms of cell recruitment, blood cell coagulation, and hemostasis. The inclusion of a dodecyl carbon chain and amino groups in alkyl-chitosan imparts remarkable antimicrobial properties by anchoring to bacteria, complemented by potent antibacterial effects of encapsulated silver nanoparticles. Moreover, microfibers can load bioactive drugs like epidermal growth factor (EGF), preserving their activity and enhancing therapeutic effects during cell proliferation and tissue remodeling. With these sequential functions to guide the whole-stage wound healing, this work offers a versatile and robust paradigm for comprehensive wound treatment, holding great potential for optimal healing outcomes.


Asunto(s)
Quitosano , Nanopartículas del Metal , Microfluídica , Quitosano/farmacología , Plata/farmacología , Cicatrización de Heridas , Antibacterianos/farmacología , Alginatos/farmacología , Alginatos/química , Impresión Tridimensional , Hidrogeles/farmacología
4.
ACS Nano ; 17(11): 9793-9825, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37253082

RESUMEN

Discovery of the amazing and vital therapeutic roles of electrical stimulation (ES) on skin has sparked tremendous efforts to investigate ES suppliers. Among them, triboelectric nanogenerators (TENGs), as a self-sustainable bioelectronic system, can generate self-powered and biocompatible ES for achieving superior therapeutic effects on skin applications. Here, a brief review of the application of TENGs-based ES on skin is presented, with specific discussions of the fundamentals of TENGs-based ES and its feasibility to be applied for adjusting physiological and pathological processes of skin. Then, a comprehensive and in-depth depiction of emerging representative skin applications of TENGs-based ES is categorized and reviewed, with particular descriptions about its therapeutic effects on achieving antibacterial therapy, promoting wound healing, and facilitating transdermal drug delivery. Finally, the challenges and perspectives for further advancing TENGs-based ES toward a more powerful and versatile therapeutic strategy are discussed, particularly regarding opportunities in fundamental multidisciplinary research and biomedical applications.


Asunto(s)
Terapia por Estimulación Eléctrica , Piel , Cicatrización de Heridas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Estimulación Eléctrica
5.
Environ Int ; 175: 107933, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37088008

RESUMEN

Recent studies on risks assessment of heavy metal(loid) are usually based on their total concentrations. Nevertheless, such an analysis does not assess their real amounts absorbed by human body. To scientifically assess the health risks, in this study medical earthworms were analyzed for relative bioavailability (RBA) of arsenic (As) and lead (Pb) using a multiple gavage mouse model with liver, kidneys, brain, and leg bones as biomarkers for the first time. Metal(loid) bioaccessibility was determined using in vitro physiologically based extraction (PBET) assay. We are the first to develop a novel accumulative health risk assessment strategy by combinational analyzing bioavailability of heavy metal(loid) levels to calculate target organ toxicity dose (TTD) modification of the HI and total cancer risk (TCR), which has capacity to evaluate the health risks of co-exposure of Pb and As in medical earthworms. As a result, As-RBA ranged from 7.2% to 45.1%, and Pb-RBA ranged from 16.1% to 49.8%. Additionally, As and Pb bioaccessibility varied from 6.7% to 48.3% and 7.8% to 52.5%, respectively. Moreover, strong in vivo-in vitro correlations (IVIVCs) were observed between metal-RBA and bioaccessibility, indicating the robustness of the in vitro PBET assay to predict metal-RBA in medical earthworms. The refined accumulative assessment strategy revealed that when adjusted by heavy metal(loid) bioavailability, the TTD modification of HI method typically exhibited an acceptable health risk caused by the co-exposure of Pb and As for cardiovascular, hematological, neurological, and renal system. The TCR levels associated with exposure to Pb and As due to the ingestion of medical earthworms were also acceptable after adjustment by bioavailability. Collectively, our innovation on accumulative risk assessment based on in vivo-in vitro correlation provides a novel approach engaging in assessing the risks due to co-exposure of As and Pb in medical earthworms.


Asunto(s)
Arsénico , Metales Pesados , Oligoquetos , Contaminantes del Suelo , Animales , Ratones , Humanos , Arsénico/toxicidad , Arsénico/análisis , Plomo/toxicidad , Plomo/análisis , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/análisis , Medición de Riesgo , Disponibilidad Biológica , Receptores de Antígenos de Linfocitos T , Suelo , Metales Pesados/análisis
6.
Plant Direct ; 7(3): e491, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36993902

RESUMEN

Lipid transfer proteins (LTPs) are widely distributed in plants and play an important role in the response to stress. Potato (Solanum tuberosum L.) is sensitive to a lack of water, and drought stress is one of the limiting factors for its yield. Therefore, mining candidate functional genes for drought stress and creating new types of potato germplasm for drought resistance is an effective way to solve this problem. There are few reports on the LTP family in potato. In this study, 39 members of the potato LTP family were identified. They were located on seven chromosomes, and the amino acid sequences encoded ranged from 101 to 345 aa. All 39 family members contained introns and had exons that ranged from one to four. Conserved motif analysis of potato LTP transcription factors showed that 34 transcription factors contained Motif 2 and Motif 4, suggesting that they were conserved motifs of potato LTP. Compared with the LTP genes of homologous crops, the potato and tomato (Solanum lycopersicum L.) LTPs were the mostly closely related. The StLTP1 and StLTP7 genes were screened by quantitative reverse transcription PCR combined with potato transcriptome data to study their expression in tissues and the characteristics of their responses to drought stress. The results showed that StLTP1 and StLTP7 were upregulated in the roots, stems, and leaves after PEG 6000 stress. Taken together, our study provides comprehensive information on the potato LTP family that will help to develop a framework for further functional studies.

7.
Invest Ophthalmol Vis Sci ; 63(11): 7, 2022 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-36223101

RESUMEN

Purpose: Following retinal detachment (RD) photoreceptors (PRs) sustain hypoxic stress and eventually die. Hypoxia-inducible factor-1α (HIF-1α) plays a central role in cellular adaptation to hypoxia. The purpose of this study is to determine the necessity of HIF-1α on PR cell survival after RD. Methods: Experimental RD was created in mice by injection of hyaluronic acid (1%) into the subretinal space. Mice with conditional HIF-1α knockout in rods (denoted as HIF-1αΔrod) were used. HIF-1α expression in retinas was measured real-time polymerase chain reaction (RT-PCR) and Western blotting. PR cell death after RD was evaluated using TUNEL assay. Optical coherence tomography (OCT) and histology were used to evaluate retinal layer thicknesses and PR cell densities. A hypoxia signaling pathway PCR array was used to examine the expression of HIF-1α target genes after RD. Results: HIF-1α protein levels were significantly increased after RD, and depletion of HIF-1α in rods blunted this increase. A compensatory increase of HIF-2α protein was observed in HIF-1αΔrod mice. Conditional knockout (cKO) of HIF-1α in rods did not lead to any morphologic change in attached retinas but resulted in significantly increased PR cell loss after RD. HIF-1α cKO in rods altered the responses to retinal detachment for 25 out of 83 HIF-1α target genes that were highly enriched for genes involved in glycolysis. Conclusions: Rod-derived HIF-1α plays a key role in the PR response to RD, mediating the transcriptional activity of a battery of genes to promote PR cell survival.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia , Desprendimiento de Retina , Animales , Western Blotting , Ácido Hialurónico , Hipoxia , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Ratones , Neuroprotección , Células Fotorreceptoras de Vertebrados/patología , Desprendimiento de Retina/metabolismo
8.
J Biol Chem ; 298(6): 101944, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35447116

RESUMEN

Mechanistic target of rapamycin (mTOR) and mTOR complex 1 (mTORC1), linchpins of the nutrient sensing and protein synthesis pathways, are present at relatively high levels in the ganglion cell layer (GCL) and retinal ganglion cells (RGCs) of rodent and human retinas. However, the role of mTORCs in the control of protein synthesis in RGC is unknown. Here, we applied the SUrface SEnsing of Translation (SUnSET) method of nascent protein labeling to localize and quantify protein synthesis in the retinas of adult mice. We also used intravitreal injection of an adeno-associated virus 2 vector encoding Cre recombinase in the eyes of mtor- or rptor-floxed mice to conditionally knockout either both mTORCs or only mTORC1, respectively, in cells within the GCL. A novel vector encoding an inactive Cre mutant (CreΔC) served as control. We found that retinal protein synthesis was highest in the GCL, particularly in RGC. Negation of both complexes or only mTORC1 significantly reduced protein synthesis in RGC. In addition, loss of mTORC1 function caused a significant reduction in the pan-RGC marker, RNA-binding protein with multiple splicing, with little decrease of the total number of cells in the RGC layer, even at 25 weeks after adeno-associated virus-Cre injection. These findings reveal that mTORC1 signaling is necessary for maintaining the high rate of protein synthesis in RGCs of adult rodents, but it may not be essential to maintain RGC viability. These findings may also be relevant to understanding the pathophysiology of RGC disorders, including glaucoma, diabetic retinopathy, and optic neuropathies.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Animales , Glaucoma/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones , Retina/metabolismo , Células Ganglionares de la Retina/metabolismo
9.
Dose Response ; 19(4): 15593258211048046, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34646092

RESUMEN

BACKGROUND: Multidrug resistance (MDR), a major problem in oncology therapy, limits the effectiveness of anticancer drugs. Although p53 functions as a tumor suppressor, the associations between p53 status, autophagy, and MDR are complicated and conditional. METHOD:  In this report, p53-null human ovarian cancer cell line SKOV3 and its MDR phenotype SKVCR and human leukemia cell line CEM and its MDR phenotype CEM-VLB) (p53 mutant cell line) were used. RESULTS:  Compared to parental SKOV3, the mRNA and protein levels of MAPLC3-II and Beclin1 were higher in SKVCR cells. The inhibition of autophagy by 3-MA significantly sensitized SKVCR to VCR. Conversely, in drug-resistant leukemic cells CEM-VLB, the expressions of Beclin1 and MAPLC3-II were lower than CEM. CEM and CEM-VLB cells were treated with VLB .01 or 0.5 µg/mL, respectively, and the expression of p53 and autophagy up-regulated after VLB (.01 µg/mL) treatment in CEM cells. The percentage of S-phase and G2/M phase cells up-regulated significantly by .01 µg/mL VLB in CEM, which may relate to the status of p53 of CEM cells. A combination of radiation with 3-MA significantly increased apoptosis in CEM-VLB cells. CONCLUSION:  Our discovery found that p53 is an important regulator controlling the balance between autophagy and MDR, as a potential drug target for ovarian cancer and leukemia.

10.
J Neuroinflammation ; 18(1): 186, 2021 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-34446062

RESUMEN

BACKGROUND: Several retinal pathologies exhibit both inflammation and breakdown of the inner blood-retinal barrier (iBRB) resulting in vascular permeability, suggesting that treatments that trigger resolution of inflammation may also promote iBRB restoration. METHODS: Using the mouse retinal ischemia-reperfusion (IR) injury model, we followed the time course of neurodegeneration, inflammation, and iBRB disruption and repair to examine the relationship between resolution of inflammation and iBRB restoration and to determine if minocycline, a tetracycline derivative shown to reverse microglial activation, can hasten these processes. RESULTS: A 90-min ischemic insult followed by reperfusion in the retina induced cell apoptosis and inner retina thinning that progressed for approximately 2 weeks. IR increased vascular permeability within hours, which resolved between 3 and 4 weeks after injury. Increased vascular permeability coincided with alteration and loss of endothelial cell tight junction (TJ) protein content and disorganization of TJ protein complexes. Shunting of blood flow away from leaky vessels and dropout of leaky capillaries were eliminated as possible mechanisms for restoring the iBRB. Repletion of TJ protein contents occurred within 2 days after injury, long before restoration of the iBRB. In contrast, the eventual re-organization of TJ complexes at the cell border coincided with restoration of the barrier. A robust inflammatory response was evident a 1 day after IR and progressed to resolution over the 4-week time course. The inflammatory response included a rapid and transient infiltration of granulocytes and Ly6C+ classical inflammatory monocytes, a slow accumulation of Ly6Cneg monocyte/macrophages, and activation, proliferation, and mobilization of resident microglia. Extravasation of the majority of CD45+ leukocytes occurred from the superficial plexus. The presence of monocyte/macrophages and increased numbers of microglia were sustained until the iBRB was eventually restored. Intervention with minocycline to reverse microglial activation at 1 week after injury promoted early restoration of the iBRB coinciding with decreased expression of mRNAs for the microglial M1 markers TNF-α, IL-1ß, and Ptgs2 (Cox-2) and increased expression of secreted serine protease inhibitor Serpina3n mRNA. CONCLUSIONS: These results suggest that iBRB restoration occurs as TJ complexes are reorganized and that resolution of inflammation and restoration of the iBRB following retinal IR injury are functionally linked.


Asunto(s)
Barrera Hematorretinal/patología , Inflamación/patología , Daño por Reperfusión/patología , Retina/patología , Vasos Retinianos/patología , Animales , Apoptosis/fisiología , Permeabilidad Capilar/fisiología , Fragmentación del ADN , Modelos Animales de Enfermedad , Ratones , Microglía/metabolismo , Recuperación de la Función/fisiología
11.
Cells ; 10(8)2021 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-34440779

RESUMEN

After retinal detachment (RD), the induction of autophagy protects photoreceptors (PR) from apoptotic cell death. The cytoplasmic high-mobility group box 1 (HMGB1) promotes autophagy. We previously demonstrated that the deletion of HMGB1 from rod PRs results in a more rapid death of these cells after RD. In this work, we tested the hypothesis that the lack of HMGB1 accelerates PR death after RD due to the reduced activation of protective autophagy in the retina after RD. The injection of 1% hyaluronic acid into the subretinal space was used to create acute RD in mice with a rhodopsin-Cre-mediated conditional knockout (cKO) of HMGB1 in rods (HMGB1Δrod) and littermate controls. RD sharply increased the number of apoptotic cells in the outer nuclear layer (ONL), and this number was further increased in HMGB1Δrod mouse retinas. The activation of autophagy after RD was reduced in the HMGB1Δrod mouse retinas compared to controls, as evidenced by diminished levels of autophagy regulatory proteins LC3-II, Beclin1, ATG5/12, and phospho-ATG16L1. The cKO of HMGB1 in rods increased the expression of Fas and the Bax/Bcl-2 ratio in detached retinas, promoting apoptotic cell death. In conclusion, endogenous HMGB1 facilitates autophagy activation in PR cells following RD to promote PR cell survival and reduce programmed apoptotic cell death.


Asunto(s)
Apoptosis , Autofagia , Proteína HMGB1/deficiencia , Desprendimiento de Retina/metabolismo , Células Fotorreceptoras Retinianas Bastones/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Relacionadas con la Autofagia/metabolismo , Supervivencia Celular , Modelos Animales de Enfermedad , Técnicas de Silenciamiento del Gen , Proteína HMGB1/genética , Mediadores de Inflamación/metabolismo , Ratones Noqueados , Desprendimiento de Retina/genética , Desprendimiento de Retina/patología , Células Fotorreceptoras Retinianas Bastones/patología , Transducción de Señal
12.
Plants (Basel) ; 9(3)2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32131389

RESUMEN

Heat shock transcription factor (Hsf) is one of key regulators in plant abotic stress response. Although the Hsf gene family has been identified from several plant species, original and evolution relationship have been fragmented. In addition, tea, an important crop, genome sequences have been completed and function of the Hsf family genes in response to abiotic stresses was not illuminated. In this study, a total of 4208 Hsf proteins were identified within 163 plant species from green algae (Gonium pectorale) to angiosperm (monocots and dicots), which were distributed unevenly into each of plant species tested. The result indicated that Hsf originated during the early evolutionary history of chlorophytae algae and genome-wide genetic varies had occurred during the course of evolution in plant species. Phylogenetic classification of Hsf genes from the representative nine plant species into ten subfamilies, each of which contained members from different plant species, imply that gene duplication had occurred during the course of evolution. In addition, based on RNA-seq data, the member of the Hsfs showed different expression levels in the different organs and at the different developmental stages in tea. Expression patterns also showed clear differences among Camellia species, indicating that regulation of Hsf genes expression varied between organs in a species-specific manner. Furthermore, expression of most Hsfs in response to drought, cold and salt stresses, imply a possible positive regulatory role under abiotic stresses. Expression profiles of nineteen Hsf genes in response to heat stress were also analyzed by quantitative real-time RT-PCR. Several stress-responsive Hsf genes were highly regulated by heat stress treatment. In conclusion, these results lay a solid foundation for us to elucidate the evolutionary origin of plant Hsfs and Hsf functions in tea response to abiotic stresses in the future.

13.
Biochem Biophys Res Commun ; 505(3): 720-725, 2018 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-30292410

RESUMEN

Bortezomib (BTZ) is one of the most frequently used drugs in treatment of multiple myeloma (MM), but drug-resistance often occurs and limits its clinical efficacy. Annexin A1 (ANXA1) is upregulated in MM, and its knockdown enhances chemosensitivity in MM. However, whether ANXA1 inhibition can increase antitumor activity of BTZ in MM cells remains unknown. In the present study, Cell Counting Kit-8 (CCK-8) and colony formation assays showed that ANXA1 silencing combined with BTZ treatment led to a more significant inhibition of MM cell proliferation than each treatment alone. Cell apoptosis was dramatically promoted in MM cells following silencing of ANXA1 and BTZ administration versus that in ANXA1-silenced alone or BTZ-treated alone cells, as evidenced by decreased expression of phosphorylated signal transducers and activators of transcription 3 and BCL2, and increased expression of BAX. Moreover, we demonstrated that the levels of IL-6 and IL-23 were markedly downregulated in ANXA1-silenced and BTZ-treated MM cells. Furthermore, the combination of ANXA1 knockdown and BTZ treatment distinctly suppressed tumor growth in vivo compared with BTZ treatment alone. Taken together, our results show that downregulation of ANXA1 enhances antitumor activity of BTZ in MM in vitro and in vivo, indicating that ANXA1 may be a promising target for enhancing the chemosensitivity of MM to BTZ.


Asunto(s)
Anexina A1/metabolismo , Antineoplásicos/farmacología , Bortezomib/farmacología , Mieloma Múltiple/tratamiento farmacológico , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Anexina A1/genética , Apoptosis/efectos de los fármacos , Apoptosis/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Humanos , Interleucina-23/sangre , Interleucina-6/sangre , Ratones , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Interferencia de ARN , Carga Tumoral/efectos de los fármacos , Carga Tumoral/genética
14.
Cancer Lett ; 423: 153, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29606293

RESUMEN

This article has been retracted: please see Elsevier Policy on Article Withdrawal (http://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor in Chief. An investigation by Wayne State University identified a discrepancy between the data reported in Figures 1B, 2B and 3C and the original collected data. The investigation committee concluded that this undermined the scientific basis of the publication, that no credible replacement data were available, and advised that the publication should be retracted.

15.
Exp Eye Res ; 151: 82-95, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27511131

RESUMEN

Insulin-like growth factor 1 (IGF-1) can provide long-term neurotrophic support by activation of Akt, inhibition of FoxO nuclear localization and suppression of Bim gene transcription in multiple neuronal systems. However, MEK/ERK activation can also promote neuron survival through phosphorylation of BimEL. We explored the contribution of the PI3K/Akt/FoxO and MEK/ERK/BimEL pathways in IGF-1 stimulated survival after serum deprivation (SD) of R28 cells differentiated to model retinal neurons. IGF-1 caused rapid activation of Akt leading to FoxO1/3-T32/T24 phosphorylation, and prevented FoxO1/3 nuclear translocation and Bim mRNA upregulation in response to SD. IGF-1 also caused MAPK/MEK pathway activation as indicated by ERK1/2-T202/Y204 and Bim-S65 phosphorylation. Overexpression of FoxO1 increased Bim mRNA expression and amplified the apoptotic response to SD without shifting the serum response curve. Inhibition of Akt activation with LY294002 or by Rictor knockdown did not block the protective effect of IGF-1, while inhibition of MEK activity with PD98059 prevented Bim phosphorylation and blocked IGF-1 protection. In addition, knockdown of Bim expression was protective during SD, while co-silencing of FoxO1 and Fox03 expression had little effect. Thus, the PI3K/Akt/FoxO pathway was not essential for protection from SD-induced apoptosis by IGF-1 in R28 cells. Instead, IGF-1 protection was dependent on activation of the MEK/ERK pathway leading to BimEL phosphorylation, which is known to prevent Bax/Bak oligomerization and activation of the intrinsic mitochondrial apoptosis pathway. These studies demonstrate the requirement of the MEK/ERK pathway in a model of retinal neuron cell survival and highlight the cell specificity for IGF-1 signaling in this response.


Asunto(s)
Apoptosis/fisiología , Regulación de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/farmacología , Proteína Quinasa 3 Activada por Mitógenos/genética , Proteínas Proto-Oncogénicas c-akt/genética , ARN/genética , Células Ganglionares de la Retina/metabolismo , Animales , Apoptosis/efectos de los fármacos , Western Blotting , Línea Celular , Supervivencia Celular , Modelos Animales de Enfermedad , Microscopía Confocal , Proteína Quinasa 3 Activada por Mitógenos/biosíntesis , Fosforilación , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Ganglionares de la Retina/patología , Transducción de Señal
18.
Biomed Pharmacother ; 82: 98-105, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27470344

RESUMEN

UNLABELLED: AUTOPHAGY: is an intracellular lysosomal degradation pathway where its primary function is to allow cells to survive under stressful conditions. Autophagy is, however, a double-edge sword that can either promote cell survival or cell death. CHEMORESISTANCE: is a major challenge in the clinical treatment of ovarian cancer, of which the underlying mechanisms remain unknown. OBJECTIVE: The aim of the present study was to explore the role of autophagy in vincristine (VCR) resistant ovarian cancer cells. METHODS: The SKOV3 parental cell line and SKVCR, the VCR-resistant ovarian carcinoma cells were used. 3-MA (3-Methyladenine) and CQ (Chloroquine) were also used as autophagy inhibitors. CCK8 (Cell Counting Kit-8) was used to detect cell viability, quantitative real-time PCR and Western blot were used to detect the expressions of mRNA and protein, MDC staining and flow cytometry were used to detect autophagy and apoptosis, respectively. RESULTS: Compared with parental SKOV3 cells, SKVCR cells showed Multidrug Resistance (MDR). SKVCR cells demonstrated higher autophagy levels than SKOV3 cells, which could be inhibited by 3-MA and CQ. In SKVCR cells, VCR increased apoptosis levels further, 3-MA and CQ inhibited autophagy and potentiated the cytotoxicity by VCR. Moreover, 3-MA and CQ overcame the acquired VCR resistance in SKVCR cells by enhancing VCR-induced cytotoxicity, and promote apoptosis. CONCLUSIONS: Our data indicate that autophagy has a protective role in the multi-drug resistant SKVCR cells. The inhibition of autophagy increases the killing effects of VCR by increasing apoptosis and inhibiting autophagy, suggesting a better strategy for the treatment of drug-resistant SKVCR cells.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Neoplasias Ováricas/patología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Humanos , Fenotipo , Vincristina/farmacología
19.
Prostate ; 75(2): 161-74, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25307492

RESUMEN

BACKGROUND: The mechanism(s) by which androgen receptor (AR) splice variants contribute to castration-resistant prostate cancer (CRPC) is still lacking. METHODS: Expressions of epithelial-to-mesenchymal transition (EMT) and stem cell markers were molecularly tested using prostate cancer (PCa) cells transfected with AR and AR3 (also known as AR-V7) plasmids or siRNA, and also cultured cells under androgen deprivation therapy (ADT) condition. Cell migration, clonogenicity, sphere-forming capacity was assessed using PCa cells under all experimental conditions and 3,3'-diindolylmethane (DIM; BR-DIM) treatment. Human PCa samples from BR-DIM untreated or treated patients were also used for assessing the expression of AR3 and stem cell markers. RESULTS: Overexpression of AR led to the induction of EMT phenotype, while overexpression of AR3 not only induced EMT but also led to the expression of stem cell signature genes. More importantly, ADT enhanced the expression of AR and AR3 concomitant with up-regulated expression of EMT and stem cell marker genes. Dihydrotestosterone (DHT) treatment decreased the expression of AR and AR3, and reversed the expression of these EMT and stem cell marker genes. BR-DIM administered to PCa patients prior to radical prostatectomy inhibited the expression of cancer stem cell markers consistent with inhibition of self-renewal of PCa cells after BR-DIM treatment. CONCLUSION: AR variants could contribute to PCa progression through induction of EMT and acquisition of stem cell characteristics, which could be attenuated by BR-DIM, suggesting that BR-DIM could become a promising agent for the prevention of CRPC and/or for the treatment of PCa.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , Regulación Neoplásica de la Expresión Génica , Células Madre Neoplásicas/metabolismo , Neoplasias de la Próstata/metabolismo , Isoformas de Proteínas/biosíntesis , Receptores Androgénicos/biosíntesis , Línea Celular Tumoral , Humanos , Masculino , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Células Madre Neoplásicas/patología , Neoplasias de la Próstata/patología , Isoformas de Proteínas/genética , Receptores Androgénicos/genética , Estudios Retrospectivos
20.
Stem Cells Dev ; 23(16): 1947-58, 2014 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-24734907

RESUMEN

Pancreatic cancer (PC) is one of the most deadly cancers. The higher mortality is in part due to treatment resistance and early onset of metastasis. The existence of cancer-stem-like cells (CSLCs) has been widely accepted to be responsible for tumor aggressiveness in PC. Emerging evidence suggests that CSLCs have the capacity for increased cell growth, cell migration/invasion, metastasis, and treatment resistance, which leads to poor clinical outcome. However, the molecular role of CSLCs in tumor development and progression is poorly understood. Therefore, mechanistic understanding, and targeted killing of CSLCs may provide a newer therapeutic strategy for the treatment of PC. It has been well accepted that microRNAs (miRNAs) play critical roles during tumor development and progression through deregulation of multiple genes. Moreover, deregulated expression of miRNAs may also play a key role in the regulation of CSLC characteristics and functions. Here we show that isolated CD44(+)/CD133(+)/EpCAM(+) cells (triple-marker-positive cells) from human PC cell lines, MiaPaCa-2 and L3.6pl cells, display aggressive characteristics, such as increased cell growth, clonogenicity, cell migration, and self-renewal capacity, which is consistent with overexpression of CSLC signatures/markers. We also found deregulated expression of over 400 miRNAs, including let-7, miR-30, miR-125b, and miR-335, in CSLCs. As a proof-of-concept, knockdown of miR-125b resulted in the inhibition of tumor cell aggressiveness of CSLCs (triple-marker-positive cells), consistent with the downregulation of CD44, EpCAM, EZH2, and snail. These results clearly suggest the importance of miRNAs in the regulation of CSLC characteristics, and may serve as novel targets for therapy.


Asunto(s)
MicroARNs/metabolismo , Células Madre Neoplásicas/metabolismo , Neoplasias Pancreáticas/metabolismo , Biomarcadores de Tumor/metabolismo , Ciclo Celular , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Separación Celular , Supervivencia Celular , Expresión Génica , Humanos , MicroARNs/genética , Neoplasias Pancreáticas/patología , Fenotipo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA