Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanotechnology ; 35(49)2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39293467

RESUMEN

Effective drug delivery with precise tumour targeting is crucial for cancer treatment. To address the challenges posed by the specificity and complexity of the tumour microenvironment, we developed a poly(tetraethylene glycol)-based disulfide nanoparticle (NP) platform and explored its potential in cancer treatment, focusing on drug loading and controlled release performance. Poly(tetraethylene glycol) NPs were characterised using nuclear magnetic resonance spectroscopy, mass spectrometry, and ultraviolet-visible spectroscopy. Additionally, we evaluated physicochemical properties, including dynamic light scattering, zeta potential analysis, drug loading capacity (DLC), and drug loading efficiency (DLE). The impact of NPs on the mouse colorectal cancer cell line (CT26) and NIH3T3 cells was assessed using a cytotoxicity assay, live/dead staining assay, flow cytometry, and confocal fluorescence microscopy. The experimental results align with the expected chemical structure and physicochemical properties of poly(tetraethylene glycol) NPs. These NPs exhibit high DLE (78.7%) and DLC (12%), with minimal changes in particle size over time in different media.In vitroexperiments revealed that the NPs can induce significant cytotoxicity and apoptosis in CT26 cells. Cellular uptake notably increases with increasing concentration and exposure time. The confocal microscopic analysis confirmed the effective distribution and accumulation of NPs within cells. In conclusion, poly(tetraethylene glycol) NPs hold promise for improving drug-delivery efficiency, offering potential advancements in cancer treatment.


Asunto(s)
Nanopartículas , Oxidación-Reducción , Polietilenglicoles , Polietilenglicoles/química , Ratones , Animales , Concentración de Iones de Hidrógeno , Nanopartículas/química , Línea Celular Tumoral , Células 3T3 NIH , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Portadores de Fármacos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Tamaño de la Partícula , Disulfuros/química
2.
Ecotoxicol Environ Saf ; 281: 116615, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38905933

RESUMEN

BACKGROUND: Paraquat (PQ) is a widely used herbicide that poisons human by accident or intentional ingestion. PQ poisoning causes systemic inflammatory response syndrome (SIRS) resulting in acute lung injury (ALI) with an extremely high mortality rate. Blood trematode Schistosoma japonicum-produced cystatin (Sj-Cys) is a strong immunomodulatory protein that has been experimentally used to treat inflammation related diseases. In this study, Sj-Cys recombinant protein (rSj-Cys) was used to treat PQ-induced lung injury and the immunological mechanism underlying the therapeutic effect was investigated. METHODS: PQ-induced acute lung injury mouse model was established by intraperitoneally injection of 20 mg/kg of paraquat. The poisoned mice were treated with rSj-Cys and the survival rate was observed up to 7 days compared with the group without treatment. The pathological changes of PQ-induced lung injury were observed by examining the histochemical sections of affected lung tissue and the wet to dry ratio of lung as a parameter for inflammation and edema. The levels of the inflammation related cytokines IL-6 and TNF-α and regulatory cytokines IL-10 and TGF-ß were measured in sera and in affected lung tissue using ELISA and their mRNA levels in lung tissue using RT-PCR. The macrophages expressing iNOS were determined as M1 and those expressing Arg-1 as M2 macrophages. The effect of rSj-Cys on the transformation of inflammatory M1 to regulatory M2 macrophages was measured in affected lung tissue in vivo (EKISA and RT-PCR) and in MH-S cell line in vitro (flow cytometry). The expression levels of TLR2 and MyD88 in affected lung tissue were also measured to determine their role in the therapy of rSj-Cys on PQ-induced lung injury. RESULT: We identified that treatment with rSj-Cys significantly improved the survival rate of mice with PQ-induced lung injury from 30 % (untreated) to 80 %, reduced the pathological damage of poisoning lung tissue, associated with significantly reduced levels of proinflammatory cytokines (IL-6 from 1490 to 590 pg/ml, TNF-α from 260 to 150 pg/ml) and increased regulatory cytokines (IL-10 from360 to 550 pg/ml, and TGF-ß from 220 to 410 pg/ml) in both sera (proteins) and affected lung tissue (proteins and mRNAs). The polarization of macrophages from M1to M2 type was found to be involved in the therapeutic effect of rSj-Cys on the PQ-induced acute lung injury, possibly through inhibiting TLR2/MyD88 signaling pathway. CONCLUSIONS: Our study demonstrated the therapeutic effect of rSj-Cys on PQ poisoning caused acute lung injury by inducing M2 macrophage polarization through inhibiting TLR2/MyD88 signaling pathway. The finding in this study provides an alternative approach for the treatment of PQ poisoning and other inflammatory diseases.


Asunto(s)
Lesión Pulmonar Aguda , Cistatinas , Paraquat , Schistosoma japonicum , Animales , Paraquat/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/tratamiento farmacológico , Ratones , Herbicidas/toxicidad , Macrófagos/efectos de los fármacos , Pulmón/patología , Pulmón/efectos de los fármacos , Masculino , Citocinas/metabolismo , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA