Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Base de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Environ Sci Eng ; 17(3): 27, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36118139

RESUMEN

The COVID-19 pandemic remains ever prevalent and afflicting-partially because one of its transmission pathways is aerosol. With the widely used central air conditioning systems worldwide, indoor virus aerosols can rapidly migrate, thus resulting in rapid infection transmission. It is therefore important to install microbial aerosol treatment units in the air conditioning systems, and we herein investigated the possibility of combining such filtration with UV irradiation to address virus aerosols. Results showed that the removal efficiency of filtration towards f2 and MS2 phages depended on the type of commercial filter material and the filtration speed, with an optimal velocity of 5 cm/s for virus removal. Additionally, it was found that UV irradiation had a significant effect on inactivating viruses enriched on the surfaces of filter materials; MS2 phages had greater resistance to UV-C irradiation than f2 phages. The optimal inactivation time for UV-C irradiation was 30 min, with higher irradiation times presenting no substantial increase in inactivation rate. Moreover, excessive virus enrichment on the filters decreased the inactivation effect. Timely inactivation is therefore recommended. In general, the combined system involving filtration with UV-C irradiation demonstrated a significant removal effect on virus aerosols. Moreover, the system is simple and economical, making it convenient for widespread implementation in air-conditioning systems.

2.
Front Plant Sci ; 13: 858477, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645995

RESUMEN

The transition of plants to land required several regulatory adaptive mechanisms. Little is known about these mechanisms, but they no doubt involved the evolution of transcription factor (TF) families. ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) transcription factors (TFs) are core components of the ethylene signaling pathway that play important roles in almost every aspect of plant development and environmental responses by regulating the transcription of numerous genes. However, the evolutionary history of EIN3/EIL TFs, which are present in a wide range of streptophytes, is still not clear. Here, to explore the evolution and functions of EIN3/EIL TFs, we performed phylogenetic analysis of these TFs and investigated their gene and protein structures as well as sequence features. Our results suggest that the EIN3/EIL TF family was already was already present in the ancestor of streptophyte algae. Phylogenetic analysis divided the EIN3/EIL TFs into three groups (Group A-C). Analysis of gene and protein structure revealed that most of the structural features of these TFs had already formed in ancient lineages. Further investigation suggested that all groups have undergone several duplication events related to whole-genome duplications in plants, generating multiple, functionally diverse gene copies. Therefore, as plants colonized terrestrial habitats and evolved key traits, the EIN3/EIL TF family expanded broadly via multiple duplication events, which could have promoted their fundamental neo- and sub-functionalization to help plants adapt to terrestrial life. Our findings shed light on the functional evolution of the EIN3/EIL TF family in the streptophytes.

3.
Environ Sci Pollut Res Int ; 25(31): 31705-31717, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30209767

RESUMEN

In this research, the adsorptive removal of diclofenac sodium, one of the representative pharmaceuticals and personal care products, from aqueous solution using Fe3O4@MOF-100(Fe) magnetic microspheres was studied for the first time. The Fe3O4@MOF-100(Fe) microspheres exhibit strong magnetism and stability, which were observed as a core-shell structure. The maximum adsorption capacity of Fe3O4@MOF-100(Fe) for diclofenac sodium can reach 377.36 mg L-1, which was higher than most of the adsorbents reported. The adsorption kinetics follows the pseudo-second-order kinetic equation. And the adsorption equilibrium of DCF can be described with Langmuir isotherm. In the cycle experiment, Fe3O4@MOF-100(Fe) material performed high adsorption efficiency for low-concentration diclofenac sodium solution, and the removal rate can still reach 80% after 5 cycles of adsorption without desorption. The mechanisms including electrostatic interaction, H-bond interaction, and π-π interaction that coexisted in the adsorption processes would be of benefit to enhance the adsorption capacity. The Fe3O4@MOF-100(Fe) magnetic microspheres offer exciting opportunities for further application.


Asunto(s)
Diclofenaco/química , Microesferas , Contaminantes Químicos del Agua/química , Adsorción , Concentración de Iones de Hidrógeno , Cinética , Magnetismo , Contaminantes Químicos del Agua/análisis , Purificación del Agua
4.
Can J Infect Dis Med Microbiol ; 2017: 4819594, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28386287

RESUMEN

Swimming in surface water bodies (e.g., lakes, rivers) can expose the human body to substantial risk of infection by Cryptosporidium. These findings are from a one-year investigation on the occurrence and distribution of the protozoan parasite Cryptosporidium in Yunlong Lake, Xuzhou, China. Cryptosporidium oocysts were detected by immunofluorescence microscopy. From January to November of 2015, 180 samples (120 water samples and 60 sediment samples) were collected and analyzed. Among them, 42 (35%) water samples and 28 (47%) sediment samples tested positive for Cryptosporidium. The concentration of Cryptosporidium oocysts in the water samples was 0-8/10 L and 0-260/g in sediment samples. Results revealed that July was the highest risk period for both swimming and diving with an estimated probability of infection from swimming of greater than 18 per 10,000 swim sessions. It was concluded that swimming or diving in Yunlong Lake has a higher risk of Cryptosporidium infection than the acceptable risk level set by the United States Environmental Protection Agency. Thus, regular monitoring of water quality in recreation water bodies is strongly recommended.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA