Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 880, 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39030253

RESUMEN

The role of hormones in gut-brain crosstalk is largely elusive, but recent research supports specific changes in hormone levels correlated with the gut microbiota. An interesting but unstudied area in microbial endocrinology is the interplay between the microbiota and sex hormones. The aim of this study is to investigate the effect of testosterone and sex on the mouse gut microbiome. We use in vitro experiments to test direct effects of testosterone on bacteria in fecal samples collected from male and female mice pre- and post-puberty. Sex-specific microbial and metabolic differences surrounding puberty are also examined in vivo. We then explore effects of testosterone supplementation in vivo, characterizing microbiota and metabolomes of male and female mice. We detect sex-specific differences in microbiota and associated metabolites of mice post-puberty, but in vitro experiments reveal that testosterone only affects microbiota of fecal samples collected before puberty. Testosterone supplementation in vivo affects gut microbiota and metabolomes in both male and female mice. Taking our results from in vitro and in vivo experiments, we conclude that the shift in the microbiome after puberty is at least partially caused by the higher levels of sex hormones, mainly testosterone, in the host.


Asunto(s)
Heces , Microbioma Gastrointestinal , Testosterona , Animales , Testosterona/metabolismo , Testosterona/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Femenino , Masculino , Ratones , Heces/microbiología , Ratones Endogámicos C57BL , Bacterias/metabolismo , Bacterias/efectos de los fármacos
2.
Psychol Trauma ; 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39023942

RESUMEN

OBJECTIVE: Identifying biomarkers that can distinguish trauma-exposed youth at risk for developing posttraumatic pathology from resilient individuals is essential for targeted interventions. As trauma can alter the microbiome with lasting effects on the host, our longitudinal, multimeasure, cross-species study aimed to identify the microbial signature of posttraumatic stress disorder (PTSD). METHOD: We followed children exposed to war-related trauma and matched controls from early childhood (Mage = 2.76 years, N = 232) to adolescence (Mage = 16.13 years, N = 84), repeatedly assessing posttraumatic symptomatology and maternal caregiving. In late adolescence, we collected fecal samples from mothers and youth and assessed microbiome composition, diversity, and mother-child microbial synchrony. We then transplanted adolescents' fecal samples into germ-free mice to determine if behavioral changes are observed. RESULTS: Youth with PTSD exhibited a distinct gut microbiome profile and lower diversity compared to resilient individuals, and microbiome diversity mediated the continuity of posttraumatic symptomatology throughout development. Low microbiome diversity correlated with more posttraumatic symptoms in early childhood, more emotional and behavioral problems in adolescence, and poor maternal caregiving. Youth with PTSD demonstrated less mother-child microbial synchrony, suggesting that low microbial concordance between mother and child may indicate susceptibility to posttraumatic illness. Germ-free mice transplanted with microbiomes from individuals with PTSD displayed increased anxious behavior. CONCLUSIONS: Our findings provide evidence that the trauma-associated microbiome profile is at least partially responsible for the anxiety component of the PTSD phenotype and highlight microbial underpinnings of resilience. Further, our results suggest that the microbiome may serve as additional biological memory of early life stress and underscore the potential for microbiome-related diagnosis and treatment following trauma. (PsycInfo Database Record (c) 2024 APA, all rights reserved).

3.
Microb Biotechnol ; 17(5): e14456, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38801001

RESUMEN

EXECUTIVE SUMMARY: Microbes are all pervasive in their distribution and influence on the functioning and well-being of humans, life in general and the planet. Microbially-based technologies contribute hugely to the supply of important goods and services we depend upon, such as the provision of food, medicines and clean water. They also offer mechanisms and strategies to mitigate and solve a wide range of problems and crises facing humanity at all levels, including those encapsulated in the sustainable development goals (SDGs) formulated by the United Nations. For example, microbial technologies can contribute in multiple ways to decarbonisation and hence confronting global warming, provide sanitation and clean water to the billions of people lacking them, improve soil fertility and hence food production and develop vaccines and other medicines to reduce and in some cases eliminate deadly infections. They are the foundation of biotechnology, an increasingly important and growing business sector and source of employment, and the centre of the bioeconomy, Green Deal, etc. But, because microbes are largely invisible, they are not familiar to most people, so opportunities they offer to effectively prevent and solve problems are often missed by decision-makers, with the negative consequences this entrains. To correct this lack of vital knowledge, the International Microbiology Literacy Initiative-the IMiLI-is recruiting from the global microbiology community and making freely available, teaching resources for a curriculum in societally relevant microbiology that can be used at all levels of learning. Its goal is the development of a society that is literate in relevant microbiology and, as a consequence, able to take full advantage of the potential of microbes and minimise the consequences of their negative activities. In addition to teaching about microbes, almost every lesson discusses the influence they have on sustainability and the SDGs and their ability to solve pressing problems of societal inequalities. The curriculum thus teaches about sustainability, societal needs and global citizenship. The lessons also reveal the impacts microbes and their activities have on our daily lives at the personal, family, community, national and global levels and their relevance for decisions at all levels. And, because effective, evidence-based decisions require not only relevant information but also critical and systems thinking, the resources also teach about these key generic aspects of deliberation. The IMiLI teaching resources are learner-centric, not academic microbiology-centric and deal with the microbiology of everyday issues. These span topics as diverse as owning and caring for a companion animal, the vast range of everyday foods that are produced via microbial processes, impressive geological formations created by microbes, childhood illnesses and how they are managed and how to reduce waste and pollution. They also leverage the exceptional excitement of exploration and discovery that typifies much progress in microbiology to capture the interest, inspire and motivate educators and learners alike. The IMiLI is establishing Regional Centres to translate the teaching resources into regional languages and adapt them to regional cultures, and to promote their use and assist educators employing them. Two of these are now operational. The Regional Centres constitute the interface between resource creators and educators-learners. As such, they will collect and analyse feedback from the end-users and transmit this to the resource creators so that teaching materials can be improved and refined, and new resources added in response to demand: educators and learners will thereby be directly involved in evolution of the teaching resources. The interactions between educators-learners and resource creators mediated by the Regional Centres will establish dynamic and synergistic relationships-a global societally relevant microbiology education ecosystem-in which creators also become learners, teaching resources are optimised and all players/stakeholders are empowered and their motivation increased. The IMiLI concept thus embraces the principle of teaching societally relevant microbiology embedded in the wider context of societal, biosphere and planetary needs, inequalities, the range of crises that confront us and the need for improved decisioning, which should ultimately lead to better citizenship and a humanity that is more sustainable and resilient. ABSTRACT: The biosphere of planet Earth is a microbial world: a vast reactor of countless microbially driven chemical transformations and energy transfers that push and pull many planetary geochemical processes, including the cycling of the elements of life, mitigate or amplify climate change (e.g., Nature Reviews Microbiology, 2019, 17, 569) and impact the well-being and activities of all organisms, including humans. Microbes are both our ancestors and creators of the planetary chemistry that allowed us to evolve (e.g., Life's engines: How microbes made earth habitable, 2023). To understand how the biosphere functions, how humans can influence its development and live more sustainably with the other organisms sharing it, we need to understand the microbes. In a recent editorial (Environmental Microbiology, 2019, 21, 1513), we advocated for improved microbiology literacy in society. Our concept of microbiology literacy is not based on knowledge of the academic subject of microbiology, with its multitude of component topics, plus the growing number of additional topics from other disciplines that become vitally important elements of current microbiology. Rather it is focused on microbial activities that impact us-individuals/communities/nations/the human world-and the biosphere and that are key to reaching informed decisions on a multitude of issues that regularly confront us, ranging from personal issues to crises of global importance. In other words, it is knowledge and understanding essential for adulthood and the transition to it, knowledge and understanding that must be acquired early in life in school. The 2019 Editorial marked the launch of the International Microbiology Literacy Initiative, the IMiLI. HERE, WE PRESENT: our concept of how microbiology literacy may be achieved and the rationale underpinning it; the type of teaching resources being created to realise the concept and the framing of microbial activities treated in these resources in the context of sustainability, societal needs and responsibilities and decision-making; and the key role of Regional Centres that will translate the teaching resources into local languages, adapt them according to local cultural needs, interface with regional educators and develop and serve as hubs of microbiology literacy education networks. The topics featuring in teaching resources are learner-centric and have been selected for their inherent relevance, interest and ability to excite and engage. Importantly, the resources coherently integrate and emphasise the overarching issues of sustainability, stewardship and critical thinking and the pervasive interdependencies of processes. More broadly, the concept emphasises how the multifarious applications of microbial activities can be leveraged to promote human/animal, plant, environmental and planetary health, improve social equity, alleviate humanitarian deficits and causes of conflicts among peoples and increase understanding between peoples (Microbial Biotechnology, 2023, 16(6), 1091-1111). Importantly, although the primary target of the freely available (CC BY-NC 4.0) IMiLI teaching resources is schoolchildren and their educators, they and the teaching philosophy are intended for all ages, abilities and cultural spectra of learners worldwide: in university education, lifelong learning, curiosity-driven, web-based knowledge acquisition and public outreach. The IMiLI teaching resources aim to promote development of a global microbiology education ecosystem that democratises microbiology knowledge.


Asunto(s)
Microbiología , Microbiología/educación , Humanos , Biotecnología
4.
Anim Microbiome ; 6(1): 19, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38650014

RESUMEN

BACKGROUND: A mother's milk is considered the gold standard of nutrition in neonates and is a source of cytokines, immunoglobulins, growth factors, and other important components, yet little is known about the components of canine milk, specifically colostrum, and the knowledge related to its microbial and metabolic profiles is particularly underwhelming. In this study, we characterized canine colostrum and milk microbiota and metabolome for several breeds of dogs and examined profile shifts as milk matures in the first 8 days post-whelping. RESULTS: Through untargeted metabolomics, we identified 63 named metabolites that were significantly differentially abundant between days 1 and 8 of lactation. Surprisingly, the microbial compositions of the colostrum and milk, characterized using 16S rRNA gene sequencing, were largely similar, with only two differentiating genera. The shifts observed, mainly increases in several sugars and amino sugars over time and shifts in amino acid metabolites, align with shifts observed in human milk samples and track with puppy development. CONCLUSION: Like human milk, canine milk composition is dynamic, and shifts are well correlated with developing puppies' needs. Such a study of the metabolic profile of canine milk, and its relation to the microbial community, provides insights into the changing needs of the neonate, as well as the ideal nutrition profile for optimal functionality. This information will add to the existing knowledge base of canine milk composition with the prospect of creating a quality, tailored milk substitute or supplement for puppies.

5.
Cancer Res Commun ; 4(4): 1063-1081, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38506672

RESUMEN

Intestinal chronic inflammation is associated with microbial dysbiosis and accumulation of various immune cells including myeloid-derived suppressor cells (MDSC), which profoundly impact the immune microenvironment, perturb homeostasis and increase the risk to develop colitis-associated colorectal cancer (CAC). However, the specific MDSCs-dysbiotic microbiota interactions and their collective impact on CAC development remain poorly understood. In this study, using a murine model of CAC, we demonstrate that CAC-bearing mice exhibit significantly elevated levels of highly immunosuppressive MDSCs, accompanied by microbiota alterations. Both MDSCs and bacteria that infiltrate the colon tissue and developing tumors can be found in close proximity, suggesting intricate MDSC-microbiota cross-talk within the tumor microenvironment. To investigate this phenomenon, we employed antibiotic treatment to disrupt MDSC-microbiota interactions. This intervention yielded a remarkable reduction in intestinal inflammation, decreased MDSC levels, and alleviated immunosuppression, all of which were associated with a significant reduction in tumor burden. Furthermore, we underscore the causative role of dysbiotic microbiota in the predisposition toward tumor development, highlighting their potential as biomarkers for predicting tumor load. We shed light on the intimate MDSCs-microbiota cross-talk, revealing how bacteria enhance MDSC suppressive features and activities, inhibit their differentiation into mature beneficial myeloid cells, and redirect some toward M2 macrophage phenotype. Collectively, this study uncovers the role of MDSC-bacteria cross-talk in impairing immune responses and promoting tumor growth, providing new insights into potential therapeutic strategies for CAC. SIGNIFICANCE: MDSCs-dysbiotic bacteria interactions in the intestine play a crucial role in intensifying immunosuppression within the CAC microenvironment, ultimately facilitating tumor growth, highlighting potential therapeutic targets for improving the treatment outcomes of CAC.


Asunto(s)
Neoplasias Asociadas a Colitis , Microbioma Gastrointestinal , Células Supresoras de Origen Mieloide , Neoplasias , Animales , Ratones , Inflamación , Microambiente Tumoral
6.
Front Endocrinol (Lausanne) ; 15: 1343337, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464968

RESUMEN

Objectives: To investigate the role of gut microbiota (GM) in pathogenesis of idiopathic short stature (ISS) by comparing GM of ISS children to their normal-height siblings. Methods: This case-control study, conducted at the Schneider Children's Medical Center's Institute for Endocrinology and Diabetes between 4/2018-11/2020, involved 30 pairs of healthy pre-pubertal siblings aged 3-10 years, each comprising one sibling with ISS and one with normal height. Outcome measures from fecal analysis of both siblings included GM composition analyzed by 16S rRNA sequencing, fecal metabolomics, and monitoring the growth of germ-free (GF) mice after fecal transplantation. Results: Fecal analysis of ISS children identified higher predicted levels of genes encoding enzymes for pyrimidine, purine, flavin, coenzyme B, and thiamine biosynthesis, lower levels of several amino acids, and a significantly higher prevalence of the phylum Euryarchaeota compared to their normal-height siblings (p<0.001). ISS children with higher levels of Methanobrevibacter, the dominant species in the archaeal gut community, were significantly shorter in stature than those with lower levels (p=0.022). Mice receiving fecal transplants from ISS children did not experience stunted growth, probably due to the eradication of Methanobrevibacter caused by exposure to oxygen during fecal collection. Discussion: Our findings suggest that different characteristics in the GM may explain variations in linear growth. The varying levels of Methanobrevibacter demonstrated within the ISS group reflect the multifactorial nature of ISS and the potential ability of the GM to partially explain growth variations. The targeting of specific microbiota could provide personalized therapies to improve growth in children with ISS.


Asunto(s)
Microbioma Gastrointestinal , Hermanos , Niño , Humanos , Ratones , Animales , Estudios de Casos y Controles , ARN Ribosómico 16S , Trastornos del Crecimiento/etiología
7.
Microbiome ; 12(1): 24, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38336867

RESUMEN

BACKGROUND: The effect of microbes on their human host is often mediated through changes in metabolite concentrations. As such, multiple tools have been proposed to predict metabolite concentrations from microbial taxa frequencies. Such tools typically fail to capture the dependence of the microbiome-metabolite relation on the environment. RESULTS: We propose to treat the microbiome-metabolome relation as the equilibrium of a complex interaction and to relate the host condition to a latent representation of the interaction between the log concentration of the metabolome and the log frequencies of the microbiome. We develop LOCATE (Latent variables Of miCrobiome And meTabolites rElations), a machine learning tool to predict the metabolite concentration from the microbiome composition and produce a latent representation of the interaction. This representation is then used to predict the host condition. LOCATE's accuracy in predicting the metabolome is higher than all current predictors. The metabolite concentration prediction accuracy significantly decreases cross datasets, and cross conditions, especially in 16S data. LOCATE's latent representation predicts the host condition better than either the microbiome or the metabolome. This representation is strongly correlated with host demographics. A significant improvement in accuracy (0.793 vs. 0.724 average accuracy) is obtained even with a small number of metabolite samples ([Formula: see text]). CONCLUSION: These results suggest that a latent representation of the microbiome-metabolome interaction leads to a better association with the host condition than any of the two separated or the simple combination of the two. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Metabolómica/métodos , ARN Ribosómico 16S , Metaboloma
9.
PLoS Biol ; 22(1): e3002486, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38236896

RESUMEN

Acute gastrointestinal infection with intracellular pathogens like Salmonella Typhimurium triggers the release of the proinflammatory cytokine interleukin 1ß (IL-1ß). However, the role of IL-1ß in intestinal defense against Salmonella remains unclear. Here, we show that IL-1ß production is detrimental during Salmonella infection. Mice lacking IL-1ß (IL-1ß -/-) failed to recruit neutrophils to the gut during infection, which reduced tissue damage and prevented depletion of short-chain fatty acid (SCFA)-producing commensals. Changes in epithelial cell metabolism that typically support pathogen expansion, such as switching energy production from fatty acid oxidation to fermentation, were absent in infected IL-1ß -/- mice which inhibited Salmonella expansion. Additionally, we found that IL-1ß induces expression of complement anaphylatoxins and suppresses the complement-inactivator carboxypeptidase N (CPN1). Disrupting this process via IL-1ß loss prevented mortality in Salmonella-infected IL-1ß -/- mice. Finally, we found that IL-1ß expression correlates with expression of the complement receptor in patients suffering from sepsis, but not uninfected patients and healthy individuals. Thus, Salmonella exploits IL-1ß signaling to outcompete commensal microbes and establish gut colonization. Moreover, our findings identify the intersection of IL-1ß signaling and the complement system as key host factors involved in controlling mortality during invasive Salmonellosis.


Asunto(s)
Interleucina-1beta , Infecciones por Salmonella , Animales , Humanos , Ratones , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Neutrófilos/metabolismo , Infecciones por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Virulencia
10.
Bone Marrow Transplant ; 59(3): 409-416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38212672

RESUMEN

Acute graft-versus-host disease (aGvHD) is a serious complication of allogeneic hematopoietic stem-cell transplantation with limited treatment options. The gut microbiome plays a critical role in aGvHD pathogenesis. Fecal microbiota transplantation (FMT) has emerged as a potential therapeutic approach to restore gut microbial diversity. In this prospective pilot study, 21 patients with steroid-resistant or steroid-dependent lower gastrointestinal aGvHD received FMT in capsule form. At 28 days after the first FMT, the overall response rate was 52.4%, with 23.8% complete and 28.6% partial responses. However, sustained responses were infrequent, with only one patient remaining aGvHD-free long-term. FMT was generally well-tolerated. Microbiome analysis revealed dysbiosis in pre-FMT patient stool samples, with distinct microbial characteristics compared to donors. Following FMT, there was an increase in beneficial Clostridiales and a decrease in pathogenic Enterobacteriales. These findings highlight the potential of FMT as a treatment option for steroid-resistant aGvHD. Trial registration number NCT #03214289.


Asunto(s)
Enfermedad Injerto contra Huésped , Trasplante de Células Madre Hematopoyéticas , Humanos , Trasplante de Microbiota Fecal/efectos adversos , Proyectos Piloto , Estudios Prospectivos , Tracto Gastrointestinal , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Enfermedad Injerto contra Huésped/etiología , Esteroides
11.
Geroscience ; 46(2): 1477-1488, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37610596

RESUMEN

Microbiota composition has been linked to physical activity, health measures, and biological age, but a shared profile has yet to be shown. The aim of this study was to examine the associations between microbiota composition and measures of function, such as a composite measure of physical capacity, and biological age in midlife, prior to onset of age-related diseases. Seventy healthy midlife individuals (age 44.58 ± 0.18) were examined cross-sectionally, and their gut-microbiota profile was characterized from stool samples using 16SrRNA gene sequencing. Biological age was measured using the Klemera-Doubal method and a composition of blood and physiological biomarkers. Physical capacity was calculated based on sex-standardized functional tests. We demonstrate that the women had significantly richer microbiota, p = 0.025; however, microbiota diversity was not linked with chronological age, biological age, or physical capacity for either women or men. Men had slightly greater ß-diversity; however, ß-diversity was positively associated with biological age and with physical capacity for women only (p = 0.01 and p = 0.04; respectively). For women, an increase in abundance of Roseburia faecis and Collinsella aerofaciens, as well as genus Ruminococcus and Dorea, was significantly associated with higher biological age and lower physical capacity; an increase in abundance of Akkermansia muciniphila and genera Bacteroides and Alistipes was associated with younger biological age and increased physical capacity. Differentially abundant taxa were also associated with non-communicable diseases. These findings suggest that microbiota composition is a potential mechanism linking physical capacity and health status; personalized probiotics may serve as a new means to support health-promoting interventions in midlife. Investigating additional factors underlying this link may facilitate the development of a more accurate method to estimate the rate of aging.


Asunto(s)
Microbioma Gastrointestinal , Caracteres Sexuales , Humanos , Masculino , Femenino , Microbioma Gastrointestinal/fisiología , Ejercicio Físico , Envejecimiento
12.
J Vet Intern Med ; 38(1): 152-160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37890857

RESUMEN

BACKGROUND: Giardia duodenalis (Gd) causes intestinal parasitosis. The involvement of the intestinal microbiome in determining the infection's clinical phenotype is unknown. OBJECTIVE: Investigate the fecal microbiome features in dogs with giardiasis. ANIMALS AND METHODS: Cross-sectional study, including fecal samples of kenneled dogs with Gd diagnosed by fecal Giardia antigen dot ELISA. The fecal microbial compositional characteristics and dysbiosis index (DI) were compared between diarrheic and nondiarrheic dogs. RESULTS: Fecal samples of 38 Gd-infected dogs (diarrheic, 21; nondiarrheic, 17) were included. No differences were found in Faith's phylogenic diversity and beta diversity (weighted UniFrac distances) and in specific taxa abundances at the phylum, genus, and species levels, as well as in alpha and beta diversities between diarrheic and nondiarrheic dogs, and also when divided by sex or age. Among diarrheic dogs, alpha diversity was higher in males than in females (pairwise Kruskal-Wallis, q = 0.01). Among males, fecal abundances of the genus Clostridium (W = 19) and Clostridium spiroforme species (W = 33) were higher in diarrheic compared to nondiarrheic dogs. In diarrheic dog fecal samples, Proteobacteria were more prevalent (W = 1), whereas Verrucomicrobia were less prevalent in dogs <1 year of age than in older dogs. The fecal sample DI of 19 diarrheic and 19 nondiarrheic dogs was similar (median, -0.2; range, -4.3 to 4.5 and median, -1.0; range, -4.3 to 5.8, respectively). CONCLUSIONS: The fecal microbial composition of symptomatic and asymptomatic dogs with giardiasis is similar. Based on fecal DI, giardiasis is not characterized by prominent dysbiosis. Other host and parasite characteristics might determine the severity of giardiasis in dogs.


Asunto(s)
Enfermedades de los Perros , Giardiasis , Microbiota , Masculino , Femenino , Animales , Perros , Giardiasis/veterinaria , Giardiasis/diagnóstico , Estudios Transversales , Disbiosis/veterinaria , Diarrea/veterinaria , Diarrea/microbiología , Heces/microbiología , Enfermedades de los Perros/diagnóstico
13.
Nat Rev Gastroenterol Hepatol ; 21(1): 35-45, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38097774

RESUMEN

The gut microbiome has important roles in host metabolism and immunity, and microbial dysbiosis affects human physiology and health. Maternal immunity and microbial metabolites during pregnancy, microbial transfer during birth, and transfer of immune factors, microorganisms and metabolites via breastfeeding provide critical sources of early-life microbial and immune training, with important consequences for human health. Only a few studies have directly examined the interactions between the gut microbiome and the immune system during pregnancy, and the subsequent effect on offspring development. In this Review, we aim to describe how the maternal microbiome shapes overall pregnancy-associated maternal, fetal and early neonatal immune systems, focusing on the existing evidence and highlighting current gaps to promote further research.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Embarazo , Femenino , Recién Nacido , Humanos , Microbioma Gastrointestinal/fisiología , Sistema Inmunológico , Lactancia Materna
14.
NPJ Biofilms Microbiomes ; 9(1): 103, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38110423

RESUMEN

Autism Spectrum Disorder (ASD) is a neurodevelopmental condition which is defined by decreased social communication and the presence of repetitive or stereotypic behaviors. Recent evidence has suggested that the gut-brain axis may be important in neurodevelopment in general and may play a role in ASD in particular. Here, we present a study of the gut microbiome in 96 individuals diagnosed with ASD in Israel, compared to 42 neurotypical individuals. We determined differences in alpha and beta diversity in the microbiome of individuals with ASD and demonstrated that the phylum Bacteroidetes and genus Bacteroides were the most significantly over-represented in individuals with ASD. To understand the possible functional significance of these changes, we treated newborn mice with Bacteroides fragilis at birth. B. fragilis-treated male mice displayed social behavior dysfunction, increased repetitive behaviors, and gene expression dysregulation in the prefrontal cortex, while female mice did not display behavioral deficits. These findings suggest that overabundance of Bacteroides, particularly in early life, may have functional consequences for individuals with ASD.


Asunto(s)
Trastorno del Espectro Autista , Trastorno Autístico , Humanos , Masculino , Ratones , Femenino , Animales , Trastorno del Espectro Autista/diagnóstico , Trastorno del Espectro Autista/genética , Bacteroides/genética , Modelos Animales de Enfermedad , Conducta Social
15.
Gut Microbes ; 15(2): 2264457, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37796016

RESUMEN

We previously reported that autologous-fecal-microbiota-transplantation (aFMT), following 6 m of lifestyle intervention, attenuated subsequent weight regain and insulin rebound for participants consuming a high-polyphenol green-Mediterranean diet. Here, we explored whether specific changes in the core (abundant) vs. non-core (low-abundance) gut microbiome taxa fractions during the weight-loss phase (0-6 m) were differentially associated with weight maintenance following aFMT. Eighty-two abdominally obese/dyslipidemic participants (age = 52 years; 6 m weightloss = -8.3 kg) who provided fecal samples (0 m, 6 m) were included. Frozen 6 m's fecal samples were processed into 1 g, opaque and odorless aFMT capsules. Participants were randomly assigned to receive 100 capsules containing their own fecal microbiota or placebo over 8 m-14 m in ten administrations (adherence rate > 90%). Gut microbiome composition was evaluated using shotgun metagenomic sequencing. Non-core taxa were defined as ≤ 66% prevalence across participants. Overall, 450 species were analyzed. At baseline, 13.3% were classified as core, and Firmicutes presented the highest core proportion by phylum. During 6 m weight-loss phase, abundance of non-core species changed more than core species (P < .0001). Subject-specific changes in core and non-core taxa fractions were strongly correlated (Jaccard Index; r = 0.54; P < .001). Following aFMT treatment, only participants with a low 6 m change in core taxa, and a high change in non-core taxa, avoided 8-14 m weight regain (aFMT = -0.58 ± 2.4 kg, corresponding placebo group = 3.18 ± 3.5 kg; P = .02). In a linear regression model, low core/high non-core 6 m change was the only combination that was significantly associated with attenuated 8-14 m weight regain (P = .038; P = .002 for taxa patterns/treatment intervention interaction). High change in non-core, low-abundance taxa during weight-loss might mediate aFMT treatment success for weight loss maintenance.ClinicalTrials.gov: NCT03020186.


Asunto(s)
Trasplante de Microbiota Fecal , Microbioma Gastrointestinal , Humanos , Persona de Mediana Edad , Heces , Pérdida de Peso , Aumento de Peso
16.
NPJ Biofilms Microbiomes ; 9(1): 71, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37752249

RESUMEN

Lacticaseibacillus rhamnosus GG (LGG) is a Gram-positive beneficial bacterium that resides in the human intestinal tract and belongs to the family of lactic acid bacteria (LAB). This bacterium is a widely used probiotic and was suggested to provide numerous benefits for human health. However, as in most LAB strains, the molecular mechanisms that mediate the competitiveness of probiotics under different diets remain unknown. Fermentation is a fundamental process in LAB, allowing the oxidation of simple carbohydrates (e.g., glucose, mannose) for energy production under oxygen limitation, as in the human gut. Our results indicate that fermentation reshapes the metabolome, volatilome, and proteome architecture of LGG. Furthermore, fermentation alters cell envelope remodeling and peptidoglycan biosynthesis, which leads to altered cell wall thickness, aggregation properties, and cell wall composition. In addition, fermentable sugars induced the secretion of known and novel metabolites and proteins targeting the enteric pathogens Enterococcus faecalis and Salmonella enterica Serovar Typhimurium. Overall, our results link simple carbohydrates with cell wall remodeling, aggregation to host tissues, and biofilm formation in probiotic strains and connect them with the production of broad-spectrum antimicrobial effectors.


Asunto(s)
Lacticaseibacillus rhamnosus , Lacticaseibacillus , Humanos , Bacterias , Fermentación , Pared Celular , Glucosa
18.
Microbiol Spectr ; : e0146323, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37565758

RESUMEN

Accumulating evidence supports the role of microbiota in autoimmune processes, but research regarding the role of the gut microbiota in celiac disease (CD) is still emerging, and a consistent CD-associated dysbiosis pattern has not yet been defined. Here, we characterized the microbiota of children newly diagnosed with CD, with their unaffected family members as a healthy control group to reduce confounding factors including genetic background, hygiene, dietary habits, and environment, and followed children with CD over 1 year of dietary intervention (exclusion of gluten) to understand if the microbiota is associated with CD and its mediation. We did not find differences in the microbiota of siblings with and without CD, despite a wealth of evidence in the literature supporting CD-specific microbiota. CD is common among first-degree relatives, so this could suggest that unaffected family members in this study may be living in a pre-CD state, currently below clinical detection. Interestingly, despite the effectiveness of diet in CD control, we did not observe diet-mediated microbiota changes, except for short-term increase in Akkermansia muciniphila. This lack of effect could suggest a very strong CD microbial signature even when controlled or could be a technical shortcoming. Expanded future studies with both related and unrelated controls and diet interventions in both the CD and control arms can provide further context to our findings. IMPORTANCE The microbiota is the community of microbes that live in and on us. These microbes are essential to our health and everyday function. Disruption of the community is associated with diseases ranging from metabolic syndrome to autoimmune diseases to mental disorders. In the case of celiac disease (CD), research remains inconclusive regarding implications of the microbiota in etiology. Here, we compared microbiota of children with CD to those of their unaffected family members and found very few differences in microbiota profiles. We next examined how gluten elimination in CD patients affects the microbiota. Surprisingly, despite diet adherence, microbiota shifts were minimal, with only a short-term increase in Akkermansia muciniphila. Previous studies suggest that family members of CD patients may be living in a pre-CD state, which could explain their microbial similarity. A larger study with unrelated controls and increased microbiota monitoring during diet intervention should give our findings more perspective.

19.
Microbiome ; 11(1): 181, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580821

RESUMEN

BACKGROUND: Some microbiota compositions are associated with negative outcomes, including among others, obesity, allergies, and the failure to respond to treatment. Microbiota manipulation or supplementation can restore a community associated with a healthy condition. Such interventions are typically probiotics or fecal microbiota transplantation (FMT). FMT donor selection is currently based on donor phenotype, rather than the anticipated microbiota composition in the recipient and associated health benefits. However, the donor and post-transplant recipient conditions differ drastically. We here propose an algorithm to identify ideal donors and predict the expected outcome of FMT based on donor microbiome alone. We also demonstrate how to optimize FMT for different required outcomes. RESULTS: We show, using multiple microbiome properties, that donor and post-transplant recipient microbiota differ widely and propose a tool to predict the recipient post-transplant condition (engraftment success and clinical outcome), using only the donors' microbiome and, when available, demographics for transplantations from humans to either mice or other humans (with or without antibiotic pre-treatment). We validated the predictor using a de novo FMT experiment highlighting the possibility of choosing transplants that optimize an array of required goals. We then extend the method to characterize a best-planned transplant (bacterial cocktail) by combining the predictor and a generative genetic algorithm (GA). We further show that a limited number of taxa is enough for an FMT to produce a desired microbiome or phenotype. CONCLUSIONS: Off-the-shelf FMT requires recipient-independent optimized FMT selection. Such a transplant can be from an optimal donor or from a cultured set of microbes. We have here shown the feasibility of both types of manipulations in mouse and human recipients. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Humanos , Animales , Ratones , Trasplante de Microbiota Fecal , Heces/microbiología , Resultado del Tratamiento
20.
Nat Commun ; 14(1): 3554, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37322020

RESUMEN

Undernutrition affects about one out of five children worldwide. It is associated with impaired growth, neurodevelopment deficits, and increased infectious morbidity and mortality. Undernutrition, however, cannot be solely attributed to a lack of food or nutrient deficiency but rather results from a complex mix of biological and environmental factors. Recent research has shown that the gut microbiome is intimately involved in the metabolism of dietary components, in growth, in the training of the immune system, and in healthy development. In this review, we look at these features in the first three years of life, which is a critical window for both microbiome establishment and maturation and child development. We also discuss the potential of the microbiome in undernutrition interventions, which could increase efficacy and improve child health outcomes.


Asunto(s)
Microbioma Gastrointestinal , Desnutrición , Microbiota , Niño , Humanos , Desarrollo Infantil , Dieta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA