Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Nat Commun ; 15(1): 5186, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890322

RESUMEN

Although different ecological factors shape adaptative evolution in natural habitats, we know little about how their interactions impact local adaptation. Here we used eight generations of experimental evolution with outcrossing Brassica rapa plants as a model system, in eight treatment groups that varied in soil type, herbivory (with/without aphids), and pollination mode (hand- or bumblebee-pollination), to study how biotic interactions affect local adaptation to soil. First, we show that several plant traits evolved in response to biotic interactions in a soil-specific way. Second, using a reciprocal transplant experiment, we demonstrate that significant local adaptation to soil-type evolved in the "number of open flowers", a trait used as a fitness proxy, but only in plants that evolved with herbivory and bee pollination. Whole genome re-sequencing of experimental lines revealed that biotic interactions caused a 10-fold increase in the number of SNPs across the genome with significant allele frequency change, and that alleles with opposite allele frequency change in different soil types (antagonistic pleiotropy) were most common in plants with an evolutionary history of herbivory and bee pollination. Our results demonstrate that the interaction with mutualists and antagonists can facilitate local adaptation to soil type through antagonistic pleiotropy.


Asunto(s)
Adaptación Fisiológica , Brassica rapa , Herbivoria , Polinización , Suelo , Suelo/química , Animales , Herbivoria/fisiología , Brassica rapa/genética , Brassica rapa/fisiología , Abejas/fisiología , Abejas/genética , Adaptación Fisiológica/genética , Polimorfismo de Nucleótido Simple , Evolución Biológica , Flores/genética , Flores/fisiología , Frecuencia de los Genes , Áfidos/fisiología , Ecosistema
2.
Genome Biol ; 25(1): 139, 2024 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802856

RESUMEN

Weeds are attractive models for basic and applied research due to their impacts on agricultural systems and capacity to swiftly adapt in response to anthropogenic selection pressures. Currently, a lack of genomic information precludes research to elucidate the genetic basis of rapid adaptation for important traits like herbicide resistance and stress tolerance and the effect of evolutionary mechanisms on wild populations. The International Weed Genomics Consortium is a collaborative group of scientists focused on developing genomic resources to impact research into sustainable, effective weed control methods and to provide insights about stress tolerance and adaptation to assist crop breeding.


Asunto(s)
Genómica , Malezas , Malezas/genética , Genómica/métodos , Control de Malezas/métodos , Genoma de Planta , Productos Agrícolas/genética , Resistencia a los Herbicidas/genética , Fitomejoramiento/métodos
3.
PLoS Genet ; 19(12): e1010865, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38150485

RESUMEN

Genome size variation, largely driven by repeat content, is poorly understood within and among populations, limiting our understanding of its significance for adaptation. Here we characterize intraspecific variation in genome size and repeat content across 186 individuals of Amaranthus tuberculatus, a ubiquitous native weed that shows flowering time adaptation to climate across its range and in response to agriculture. Sequence-based genome size estimates vary by up to 20% across individuals, consistent with the considerable variability in the abundance of transposable elements, unknown repeats, and rDNAs across individuals. The additive effect of this variation has important phenotypic consequences-individuals with more repeats, and thus larger genomes, show slower flowering times and growth rates. However, compared to newly-characterized gene copy number and polygenic nucleotide changes underlying variation in flowering time, we show that genome size is a marginal contributor. Differences in flowering time are reflected by genome size variation across sexes and marginally, habitats, while polygenic variation and a gene copy number variant within the ATP synthesis pathway show consistently stronger environmental clines than genome size. Repeat content nonetheless shows non-neutral distributions across the genome, and across latitudinal and environmental gradients, demonstrating the numerous governing processes that in turn influence quantitative genetic variation for phenotypes key to plant adaptation.


Asunto(s)
Amaranthus , Humanos , Amaranthus/genética , Tamaño del Genoma , Adaptación Fisiológica/genética , Clima , Fenotipo
4.
Mol Ecol ; 32(24): 6729-6742, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37873879

RESUMEN

Biological invasions represent an extraordinary opportunity to study evolution. This is because accidental or deliberate species introductions have taken place for centuries across large geographical scales, frequently prompting rapid evolutionary transitions in invasive populations. Until recently, however, the utility of invasions as evolutionary experiments has been hampered by limited information on the makeup of populations that were part of earlier invasion stages. Now, developments in ancient and historical DNA technologies, as well as the quickening pace of digitization for millions of specimens that are housed in herbaria and museums globally, promise to help overcome this obstacle. In this review, we first introduce the types of temporal data that can be used to study invasions, highlighting the timescale captured by each approach and their respective limitations. We then discuss how ancient and historical specimens as well as data available from prior invasion studies can be used to answer questions on mechanisms of (mal)adaptation, rates of evolution, or community-level changes during invasions. By bridging the gap between contemporary and historical invasive populations, temporal data can help us connect pattern to process in invasion science. These data will become increasingly important if invasions are to achieve their full potential as experiments of evolution in nature.


Asunto(s)
ADN , Museos , ADN/genética , Biología
5.
Mol Ecol ; 32(2): 278-280, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36440474

RESUMEN

Quantifying the impact of human activity on the capacity of populations to persist is paramount to conservation biology, as numerous species and populations have already been driven to or beyond the brink of extinction. Those populations that persist are often a sobering example of the evolutionary power of human-disturbance, such as the loss of tusks in African elephants resulting from ivory harvesting (Campbell-Staton et al., 2021) and rapid life-history evolution in northern Atlantic cod in response to fisheries (Olsen et al., 2004). These evolutionary responses reflect a delicate interplay between demographic and selective processes (e.g., evolutionary rescue: Bell & Gonzalez, 2009; Gomulkiewicz & Holt, 1995), both of which can modify genetic variation for fitness. While quantifying fitness remains a difficult challenge, generalizable insights into the evolutionary consequences of population collapse can be provided in systems with independent demographic shifts in response to human activity. Unfortunately, such was the case for sea otter populations across its range in the 18th and 19th centuries, where the fur-trade had catastrophic, range-wide effects on sea otter (Enhydra lutris) populations. In a From the Cover article in this issue of Molecular Ecology, Beichman et al. (2022) combine a population genomic spatiotemporal data set and theoretical simulations not only to quantify past demographic change in response to sea otter exploitation, but also to understand the consequences of population collapse on species persistence.


Asunto(s)
Nutrias , Animales , Humanos , Nutrias/genética , Demografía
6.
Science ; 378(6624): 1079-1085, 2022 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-36480621

RESUMEN

North America has experienced a massive increase in cropland use since 1800, accompanied more recently by the intensification of agricultural practices. Through genome analysis of present-day and historical samples spanning environments over the past two centuries, we studied the effect of these changes in farming on the extent and tempo of evolution across the native range of the common waterhemp (Amaranthus tuberculatus), a now pervasive agricultural weed. Modern agriculture has imposed strengths of selection rarely observed in the wild, with notable shifts in allele frequency trajectories since agricultural intensification in the 1960s. An evolutionary response to this extreme selection was facilitated by a concurrent human-mediated range shift. By reshaping genome-wide diversity across the landscape, agriculture has driven the success of this weed in the 21st century.


Asunto(s)
Adaptación Fisiológica , Amaranthus , Efectos Antropogénicos , Granjas , Malezas , Humanos , América del Norte , Malezas/genética , Malezas/fisiología , Amaranthus/genética , Amaranthus/fisiología , Adaptación Fisiológica/genética , Selección Genética , Variación Genética
7.
Elife ; 112022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35037853

RESUMEN

Causal mutations and their frequency in agricultural fields are well-characterized for herbicide resistance. However, we still lack understanding of their evolutionary history: the extent of parallelism in the origins of target-site resistance (TSR), how long these mutations persist, how quickly they spread, and allelic interactions that mediate their selective advantage. We addressed these questions with genomic data from 19 agricultural populations of common waterhemp (Amaranthus tuberculatus), which we show to have undergone a massive expansion over the past century, with a contemporary effective population size estimate of 8 x 107. We found variation at seven characterized TSR loci, two of which had multiple amino acid substitutions, and three of which were common. These three common resistance variants show extreme parallelism in their mutational origins, with gene flow having shaped their distribution across the landscape. Allele age estimates supported a strong role of adaptation from de novo mutations, with a median age of 30 suggesting that most resistance alleles arose soon after the onset of herbicide use. However, resistant lineages varied in both their age and evidence for selection over two different timescales, implying considerable heterogeneity in the forces that govern their persistence. Two such forces are intra- and inter-locus allelic interactions; we report a signal of extended haplotype competition between two common TSR alleles, and extreme linkage with genome-wide alleles with known functions in resistance adaptation. Together, this work reveals a remarkable example of spatial parallel evolution in a metapopulation, with important implications for the management of herbicide resistance.


Asunto(s)
Amaranthus/genética , Flujo Génico/genética , Genoma de Planta/genética , Resistencia a los Herbicidas/genética , Mutación/genética , Alelos , Genómica
8.
Evolution ; 76(1): 70-85, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34806764

RESUMEN

The relative role of hybridization, de novo evolution, and standing variation in weed adaptation to agricultural environments is largely unknown. In Amaranthus tuberculatus, a widespread North American agricultural weed, adaptation is likely influenced by recent secondary contact and admixture of two previously isolated lineages. We characterized the extent of adaptation and phenotypic differentiation accompanying the spread of A. tuberculatus into agricultural environments and the contribution of ancestral divergence. We generated phenotypic and whole-genome sequence data from a manipulative common garden experiment, using paired samples from natural and agricultural populations. We found strong latitudinal, longitudinal, and sex differentiation in phenotypes, and subtle differences among agricultural and natural environments that were further resolved with ancestry inference. The transition into agricultural environments has favored southwestern var. rudis ancestry that leads to higher biomass and treatment-specific phenotypes: increased biomass and earlier flowering under reduced water availability, and reduced plasticity in fitness-related traits. We also detected de novo adaptation in individuals from agricultural habitats independent of ancestry effects, including marginally higher biomass, later flowering, and treatment-dependent divergence in time to germination. Therefore, the invasion of A. tuberculatus into agricultural environments has drawn on adaptive variation across multiple timescales-through both preadaptation via the preferential sorting of var. rudis ancestry and de novo local adaptation.


Asunto(s)
Amaranthus , Adaptación Fisiológica , Agricultura , Amaranthus/genética , Ecosistema , Humanos , Fenotipo
10.
Mol Ecol ; 30(21): 5373-5389, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33853196

RESUMEN

Much of what we know about the genetic basis of herbicide resistance has come from detailed investigations of monogenic adaptation at known target-sites, despite the increasingly recognized importance of polygenic resistance. Little work has been done to characterize the broader genomic basis of herbicide resistance, including the number and distribution of genes involved, their effect sizes, allele frequencies and signatures of selection. In this work, we implemented genome-wide association (GWA) and population genomic approaches to examine the genetic architecture of glyphosate (Round-up) resistance in the problematic agricultural weed Amaranthus tuberculatus. A GWA was able to correctly identify the known target-gene but statistically controlling for two causal target-site mechanisms revealed an additional 250 genes across all 16 chromosomes associated with non-target-site resistance (NTSR). The encoded proteins had functions that have been linked to NTSR, the most significant of which is response to chemicals, but also showed pleiotropic roles in reproduction and growth. Compared to an empirical null that accounts for complex population structure, the architecture of NTSR was enriched for large effect sizes and low allele frequencies, suggesting the role of pleiotropic constraints on its evolution. The enrichment of rare alleles also suggested that the genetic architecture of NTSR may be population-specific and heterogeneous across the range. Despite their rarity, we found signals of recent positive selection on NTSR-alleles by both window- and haplotype-based statistics, and an enrichment of amino acid changing variants. In our samples, genome-wide single nucleotide polymorphisms explain a comparable amount of the total variation in glyphosate resistance to monogenic mechanisms, even in a collection of individuals where 80% of resistant individuals have large-effect TSR mutations, indicating an underappreciated polygenic contribution to the evolution of herbicide resistance in weed populations.


Asunto(s)
Amaranthus , Herbicidas , Amaranthus/genética , Estudio de Asociación del Genoma Completo , Glicina/análogos & derivados , Resistencia a los Herbicidas/genética , Herbicidas/farmacología , Humanos , Metagenómica , Glifosato
11.
Proc Natl Acad Sci U S A ; 116(42): 21076-21084, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31570613

RESUMEN

The selection pressure exerted by herbicides has led to the repeated evolution of herbicide resistance in weeds. The evolution of herbicide resistance on contemporary timescales in turn provides an outstanding opportunity to investigate key questions about the genetics of adaptation, in particular the relative importance of adaptation from new mutations, standing genetic variation, or geographic spread of adaptive alleles through gene flow. Glyphosate-resistant Amaranthus tuberculatus poses one of the most significant threats to crop yields in the Midwestern United States, with both agricultural populations and herbicide resistance only recently emerging in Canada. To understand the evolutionary mechanisms driving the spread of resistance, we sequenced and assembled the A. tuberculatus genome and investigated the origins and population genomics of 163 resequenced glyphosate-resistant and susceptible individuals from Canada and the United States. In Canada, we discovered multiple modes of convergent evolution: in one locality, resistance appears to have evolved through introductions of preadapted US genotypes, while in another, there is evidence for the independent evolution of resistance on genomic backgrounds that are historically nonagricultural. Moreover, resistance on these local, nonagricultural backgrounds appears to have occurred predominantly through the partial sweep of a single haplotype. In contrast, resistant haplotypes arising from the Midwestern United States show multiple amplification haplotypes segregating both between and within populations. Therefore, while the remarkable species-wide diversity of A. tuberculatus has facilitated geographic parallel adaptation of glyphosate resistance, more recently established agricultural populations are limited to adaptation in a more mutation-limited framework.

12.
Plants (Basel) ; 8(9)2019 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-31546893

RESUMEN

Genomic approaches are opening avenues for understanding all aspects of biological life, especially as they begin to be applied to multiple individuals and populations. However, these approaches typically depend on the availability of a sequenced genome for the species of interest. While the number of genomes being sequenced is exploding, one group that has lagged behind are weeds. Although the power of genomic approaches for weed science has been recognized, what is needed to implement these approaches is unfamiliar to many weed scientists. In this review we attempt to address this problem by providing a primer on genome sequencing and provide examples of how genomics can help answer key questions in weed science such as: (1) Where do agricultural weeds come from; (2) what genes underlie herbicide resistance; and, more speculatively, (3) can we alter weed populations to make them easier to control? This review is intended as an introduction to orient weed scientists who are thinking about initiating genome sequencing projects to better understand weed populations, to highlight recent publications that illustrate the potential for these methods, and to provide direction to key tools and literature that will facilitate the development and execution of weed genomic projects.

13.
Proc Natl Acad Sci U S A ; 116(12): 5665-5674, 2019 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-30833407

RESUMEN

In most eukaryotes, organellar genomes are transmitted preferentially by the mother, but molecular mechanisms and evolutionary forces underlying this fundamental biological principle are far from understood. It is believed that biparental inheritance promotes competition between the cytoplasmic organelles and allows the spread of so-called selfish cytoplasmic elements. Those can be, for example, fast-replicating or aggressive chloroplasts (plastids) that are incompatible with the hybrid nuclear genome and therefore maladaptive. Here we show that the ability of plastids to compete against each other is a metabolic phenotype determined by extremely rapidly evolving genes in the plastid genome of the evening primrose Oenothera Repeats in the regulatory region of accD (the plastid-encoded subunit of the acetyl-CoA carboxylase, which catalyzes the first and rate-limiting step of lipid biosynthesis), as well as in ycf2 (a giant reading frame of still unknown function), are responsible for the differences in competitive behavior of plastid genotypes. Polymorphisms in these genes influence lipid synthesis and most likely profiles of the plastid envelope membrane. These in turn determine plastid division and/or turnover rates and hence competitiveness. This work uncovers cytoplasmic drive loci controlling the outcome of biparental chloroplast transmission. Here, they define the mode of chloroplast inheritance, as plastid competitiveness can result in uniparental inheritance (through elimination of the "weak" plastid) or biparental inheritance (when two similarly "strong" plastids are transmitted).


Asunto(s)
Cloroplastos/genética , Cloroplastos/fisiología , Oenothera biennis/metabolismo , Acetil-CoA Carboxilasa/genética , Evolución Biológica , Núcleo Celular/genética , Citoplasma/genética , Eucariontes/genética , Genoma , Genoma de Plastidios/genética , Genotipo , Lípidos/biosíntesis , Oenothera biennis/fisiología , Proteínas de Plantas/genética , Plastidios/genética
14.
PLoS Genet ; 15(2): e1007949, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30768594

RESUMEN

Allopolyploidy is generally perceived as a major source of evolutionary novelties and as an instantaneous way to create isolation barriers. However, we do not have a clear understanding of how two subgenomes evolve and interact once they have fused in an allopolyploid species nor how isolated they are from their relatives. Here, we address these questions by analyzing genomic and transcriptomic data of allotetraploid Capsella bursa-pastoris in three differentiated populations, Asia, Europe, and the Middle East. We phased the two subgenomes, one descended from the outcrossing and highly diverse Capsella grandiflora (CbpCg) and the other one from the selfing and genetically depauperate Capsella orientalis (CbpCo). For each subgenome, we assessed its relationship with the diploid relatives, temporal changes of effective population size (Ne), signatures of positive and negative selection, and gene expression patterns. In all three regions, Ne of the two subgenomes decreased gradually over time and the CbpCo subgenome accumulated more deleterious changes than CbpCg. There were signs of widespread admixture between C. bursa-pastoris and its diploid relatives. The two subgenomes were impacted differentially depending on geographic region suggesting either strong interploidy gene flow or multiple origins of C. bursa-pastoris. Selective sweeps were more common on the CbpCg subgenome in Europe and the Middle East, and on the CbpCo subgenome in Asia. In contrast, differences in expression were limited with the CbpCg subgenome slightly more expressed than CbpCo in Europe and the Middle-East. In summary, after more than 100,000 generations of co-existence, the two subgenomes of C. bursa-pastoris still retained a strong signature of parental legacy but their evolutionary trajectory strongly varied across geographic regions.


Asunto(s)
Capsella/genética , Evolución Molecular , Genoma de Planta , Tetraploidía , Asia , Capsella/clasificación , ADN de Plantas/genética , Diploidia , Europa (Continente) , Genética de Población , Hibridación Genética , Medio Oriente , Modelos Genéticos , Mutación , Filogenia , Filogeografía , Poliploidía , Especificidad de la Especie
16.
Annu Rev Plant Biol ; 69: 611-635, 2018 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-29140727

RESUMEN

The evolution of herbicide resistance in weed populations is a highly replicated example of adaptation surmounting the race against extinction, but the factors determining its rate and nature remain poorly understood. Here, we explore theory and empirical evidence for the importance of population genetic parameters-including effective population size, dominance, mutational target size, and gene flow-in influencing the probability and mode of herbicide resistance adaptation and its variation across species. We compiled data on the number of resistance mutations across populations for 79 herbicide-resistant species. Our findings are consistent with theoretical predictions that self-fertilization reduces resistance adaptation from standing variation within populations, but increases independent adaptation across populations. Furthermore, we provide evidence for a ploidy-mating system interaction that may reflect trade-offs in polyploids between increased effective population size and greater masking of beneficial mutations. We highlight the power of population genomic approaches to provide insights into the evolutionary dynamics of herbicide resistance with important implications for understanding the limits of adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Evolución Biológica , Resistencia a los Herbicidas/genética , Genética de Población , Genómica , Modelos Biológicos
17.
Trends Genet ; 33(9): 583-593, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28732599

RESUMEN

Unreduced gametes, which have the somatic (2n) chromosome number, are an important precursor to polyploid formation and apomixis. The product of irregularities in meiosis, 2n gametes are expected to be rare and deleterious in most natural populations, contrary to their wide taxonomic distribution and the prevalence of polyploidy. To better understand this discrepancy, we review contemporary evidence related to four aspects of 2n gamete dynamics in natural populations: (i) estimates of their frequency; (ii) their environmental and genetic determinants; (iii) adaptive and nonadaptive processes regulating their evolution; and (iv) factors regulating their union and production of polyploids in diploid populations. Aided by high-throughput methods of detection, these foci will advance our understanding of variation in 2n gametes within and among species, and their role in polyploid evolution.


Asunto(s)
Evolución Molecular , Células Germinativas , Ploidias
18.
New Phytol ; 214(2): 879-889, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28134436

RESUMEN

Fertilization involving unreduced (2n) gametes is considered the dominant mechanism of polyploid formation in angiosperms; however, our knowledge of the prevalence of and evolutionary mechanisms maintaining 2n gametes in natural populations is limited. We hypothesize that 2n gametes are deleterious consequences of meiotic errors maintained by mutation-selection balance and should increase in species with relaxed opportunities for selection on sexual processes (asexuality), reduced efficacy of selection (asexuality, selfing) and increased genome instability (high chromosome number). We used flow cytometry to estimate male 2n gamete production in 60 populations from 24 species of Brassicaceae. We quantified variation in 2n gamete production within and among species, and examined associations with life history, reproductive mode, genome size and chromosomal number while accounting for phylogeny. Most individuals produced < 2% 2n male gametes, whereas a small number had > 5% (up to 85%) production. Variation in 2n gamete production was significant among species and related to reproductive system; asexual species produced significantly more 2n gametes than mixed-mating and outcrossing species. Our results, unique in their multi-species perspective, are consistent with 2n gametes being deleterious but maintained when opportunities for selection are limited. Rare individuals with elevated 2n gamete production may be key contributors to polyploid formation.


Asunto(s)
Brassicaceae/genética , Brassicaceae/fisiología , Tamaño del Genoma , Genoma de Planta , Células Germinativas de las Plantas/metabolismo , Análisis de los Mínimos Cuadrados , Modelos Genéticos , Filogenia , Reproducción , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA