Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Commun Biol ; 7(1): 1043, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179675

RESUMEN

Complexity is important for flexibility of natural behavior and for the remarkably efficient learning of the brain. Here we assessed the signal complexity among neuron populations in somatosensory cortex (S1). To maximize our chances of capturing population-level signal complexity, we used highly repeatable resolvable visual, tactile, and visuo-tactile inputs and neuronal unit activity recorded at high temporal resolution. We found the state space of the spontaneous activity to be extremely high-dimensional in S1 populations. Their processing of tactile inputs was profoundly modulated by visual inputs and even fine nuances of visual input patterns were separated. Moreover, the dynamic activity states of the S1 neuron population signaled the preceding specific input long after the stimulation had terminated, i.e., resident information that could be a substrate for a working memory. Hence, the recorded high-dimensional representations carried rich multimodal and internal working memory-like signals supporting high complexity in cortical circuitry operation.


Asunto(s)
Memoria a Corto Plazo , Neuronas , Corteza Somatosensorial , Memoria a Corto Plazo/fisiología , Neuronas/fisiología , Corteza Somatosensorial/fisiología , Animales , Masculino
2.
Sci Rep ; 14(1): 15243, 2024 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956102

RESUMEN

Cortical sensory processing is greatly impacted by internally generated activity. But controlling for that activity is difficult since the thalamocortical network is a high-dimensional system with rapid state changes. Therefore, to unwind the cortical computational architecture there is a need for physiological 'landmarks' that can be used as frames of reference for computational state. Here we use a waveshape transform method to identify conspicuous local field potential sharp waves (LFP-SPWs) in the somatosensory cortex (S1). LFP-SPW events triggered short-lasting but massive neuronal activation in all recorded neurons with a subset of neurons initiating their activation up to 20 ms before the LFP-SPW onset. In contrast, LFP-SPWs differentially impacted the neuronal spike responses to ensuing tactile inputs, depressing the tactile responses in some neurons and enhancing them in others. When LFP-SPWs coactivated with more distant cortical surface (ECoG)-SPWs, suggesting an involvement of these SPWs in global cortical signaling, the impact of the LFP-SPW on the neuronal tactile response could change substantially, including inverting its impact to the opposite. These cortical SPWs shared many signal fingerprint characteristics as reported for hippocampal SPWs and may be a biomarker for a particular type of state change that is possibly shared byboth hippocampus and neocortex.


Asunto(s)
Neuronas , Corteza Somatosensorial , Animales , Corteza Somatosensorial/fisiología , Neuronas/fisiología , Tacto/fisiología , Potenciales de Acción/fisiología , Masculino , Percepción del Tacto/fisiología
3.
Sci Rep ; 13(1): 14361, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37658186

RESUMEN

The present study describes a detailed procedure for expressing and purifying the integral membrane protein RseP using the pSIP system and Lactiplantibacillus plantarum as an expression host. RseP is a membrane-bound site-2-protease and a known antibacterial target in multiple human pathogens. In the present study, we screened five RseP orthologs from Gram-positive bacteria and found RseP from Enterococcus faecium (EfmRseP) to yield the highest protein levels. The production conditions were optimized and EfmRseP was purified by immobilized metal ion affinity chromatography followed by size-exclusion chromatography. The purification resulted in an overall yield of approximately 1 mg of pure protein per 3 g of wet-weight cell pellet. The structural integrity of the purified protein was confirmed using circular dichroism. We further assessed the expression and purification of RseP from E. faecium in the Gram-negative Escherichia coli. Detection of soluble protein failed in two of the three E. coli strains tested. Purification of EfmRseP expressed in E. coli C43(DE3) resulted in a protein with lower purity compared to EfmRseP expressed in L. plantarum. To our knowledge, this is the first time L. plantarum and the pSIP expression system have been applied for the production of membrane proteins.


Asunto(s)
Proteínas de Escherichia coli , Proteínas de la Membrana , Humanos , Proteínas de la Membrana/genética , Benchmarking , Escherichia coli/genética , Antibacterianos , Cromatografía de Afinidad , Endopeptidasas
4.
Microlife ; 4: uqad025, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37223736

RESUMEN

Site-2-proteases are a class of intramembrane proteases involved in regulated intramembrane proteolysis. Regulated intramembrane proteolysis is a highly conserved signaling mechanism that commonly involves sequential digestion of an anti-sigma factor by a site-1- and site-2-protease in response to external stimuli, resulting in an adaptive transcriptional response. Variation of this signaling cascade continues to emerge as the role of site-2-proteases in bacteria continues to be explored. Site-2-proteases are highly conserved among bacteria and play a key role in multiple processes, including iron uptake, stress response, and pheromone production. Additionally, an increasing number of site-2-proteases have been found to play a pivotal role in the virulence properties of multiple human pathogens, such as alginate production in Pseudomonas aeruginosa, toxin production in Vibrio cholerae, resistance to lysozyme in enterococci and antimicrobials in several Bacillus spp, and cell-envelope lipid composition in Mycobacterium tuberculosis. The prominent role of site-2-proteases in bacterial pathogenicity highlights the potential of site-2-proteases as novel targets for therapeutic intervention. In this review, we summarize the role of site-2-proteases in bacterial physiology and virulence, as well as evaluate the therapeutic potential of site-2-proteases.

5.
J Biol Chem ; 298(11): 102593, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36244452

RESUMEN

Enterocin K1 (EntK1), a bacteriocin that is highly potent against vancomycin-resistant enterococci, depends on binding to an intramembrane protease of the site-2 protease family, RseP, for its antimicrobial activity. RseP is highly conserved in both EntK1-sensitive and EntK1-insensitive bacteria, and the molecular mechanisms underlying the interaction between RseP and EntK1 and bacteriocin sensitivity are unknown. Here, we describe a mutational study of RseP from EntK1-sensitive Enterococcus faecium to identify regions of RseP involved in bacteriocin binding and activity. Mutational effects were assessed by studying EntK1 sensitivity and binding with strains of naturally EntK1-insensitive Lactiplantibacillus plantarum-expressing various RseP variants. We determined that site-directed mutations in conserved sequence motifs related to catalysis and substrate binding, and even deletion of two such motifs known to be involved in substrate binding, did not abolish bacteriocin sensitivity, with one exception. A mutation of a highly conserved asparagine, Asn359, in the extended so-called LDG motif abolished both binding of and killing by EntK1. By constructing various hybrids of the RseP proteins from sensitive E. faecium and insensitive L. plantarum, we showed that the extracellular PDZ domain is the key determinant of EntK1 sensitivity. Taken together, these data may provide valuable insight for guided construction of novel bacteriocins and may contribute to establishing RseP as an antibacterial target.


Asunto(s)
Bacteriocinas , Enterococcus faecium , Proteínas de Escherichia coli , Bacteriocinas/genética , Bacteriocinas/farmacología , Proteínas de Escherichia coli/metabolismo , Endopeptidasas/metabolismo , Proteínas de la Membrana/metabolismo , Enterococcus faecium/metabolismo , Metaloproteasas
6.
J Antimicrob Chemother ; 77(6): 1625-1634, 2022 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-35245364

RESUMEN

BACKGROUND: The macrophage infectivity potentiator (Mip) protein, which belongs to the immunophilin superfamily, is a peptidyl-prolyl cis/trans isomerase (PPIase) enzyme. Mip has been shown to be important for virulence in a wide range of pathogenic microorganisms. It has previously been demonstrated that small-molecule compounds designed to target Mip from the Gram-negative bacterium Burkholderia pseudomallei bind at the site of enzymatic activity of the protein, inhibiting the in vitro activity of Mip. OBJECTIVES: In this study, co-crystallography experiments with recombinant B. pseudomallei Mip (BpMip) protein and Mip inhibitors, biochemical analysis and computational modelling were used to predict the efficacy of lead compounds for broad-spectrum activity against other pathogens. METHODS: Binding activity of three lead compounds targeting BpMip was verified using surface plasmon resonance spectroscopy. The determination of crystal structures of BpMip in complex with these compounds, together with molecular modelling and in vitro assays, was used to determine whether the compounds have broad-spectrum antimicrobial activity against pathogens. RESULTS: Of the three lead small-molecule compounds, two were effective in inhibiting the PPIase activity of Mip proteins from Neisseria meningitidis, Klebsiella pneumoniae and Leishmania major. The compounds also reduced the intracellular burden of these pathogens using in vitro cell infection assays. CONCLUSIONS: These results indicate that Mip is a novel antivirulence target that can be inhibited using small-molecule compounds that prove to be promising broad-spectrum drug candidates in vitro. Further optimization of compounds is required for in vivo evaluation and future clinical applications.


Asunto(s)
Proteínas Bacterianas , Bacterias Gramnegativas , Leishmania major , Isomerasa de Peptidilprolil , Proteínas Protozoarias , Proteínas Bacterianas/antagonistas & inhibidores , Bacterias Gramnegativas/efectos de los fármacos , Leishmania major/efectos de los fármacos , Macrófagos/metabolismo , Neisseria meningitidis , Isomerasa de Peptidilprolil/antagonistas & inhibidores , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Recombinantes
7.
Sci Rep ; 11(1): 13909, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230527

RESUMEN

Bacteriocins are ribosomally-synthesized antimicrobial peptides, showing great potential as novel treatment options for multidrug-resistant pathogens. In this study, we designed a novel hybrid bacteriocin, Hybrid 1 (H1), by combing the N-terminal part and the C-terminal part of the related bacteriocins enterocin K1 (K1) and enterocin EJ97 (EJ97), respectively. Like the parental bacteriocins, H1 used the membrane-bound protease RseP as receptor, however, it differed from the others in the inhibition spectrum. Most notably, H1 showed a superior antimicrobial effect towards Staphylococcus haemolyticus-an important nosocomial pathogen. To avoid strain-dependency, we further evaluated H1 against 27 clinical and commensal S. haemolyticus strains, with H1 indeed showing high activity towards all strains. To curtail the rise of resistant mutants and further explore the potential of H1 as a therapeutic agent, we designed a bacteriocin-based formulation where H1 was used in combination with the broad-spectrum bacteriocins micrococcin P1 and garvicin KS. Unlike the individual bacteriocins, the three-component combination was highly effective against planktonic cells and completely eradicated biofilm-associated S. haemolyticus cells in vitro. Most importantly, the formulation efficiently prevented development of resistant mutants as well. These findings indicate the potential of a bacteriocins-based formulation as a treatment option for S. haemolyticus.


Asunto(s)
Bacteriocinas/farmacología , Biopelículas/efectos de los fármacos , Staphylococcus haemolyticus/fisiología , Secuencia de Aminoácidos , Antiinfecciosos/farmacología , Bacteriocinas/química , Farmacorresistencia Bacteriana/efectos de los fármacos , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Mutación/genética , Staphylococcus haemolyticus/efectos de los fármacos , Staphylococcus haemolyticus/genética , Secuenciación Completa del Genoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA