Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Conserv Physiol ; 9(1): coab001, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33575032

RESUMEN

The integration of multiple tissues in physiological and ecological analyses can enhance methodological approaches, increase applications for data and extend interpretation of results. Previous investigations of the stress response in fish have focused primarily on cortisol levels in a single matrix-blood plasma-which confines interpretations of cortisol levels to a short temporal frame. Epidermal mucus has been proposed as an alternative or complement to plasma that may provide a view to cortisol levels over a different temporal window allowing comparative assessment. Here, we explore the potential for multi-tissue cortisol analysis using both plasma and epidermal mucus in Pacific halibut (Hippoglossus stenolepis). The relative timing at which cortisol increased and decreased in the two matrices as well as cortisol concentrations at estimated peak levels were compared in two trials after (i) inducing cortisol synthesis by adrenocorticotropic hormone (ACTH1-24) administration and (ii) inducing cortisol elimination using cortisol (hydrocortisone, 98%) injection. The ACTH treatment elicited a peak plasma cortisol response approximately 12 hours post-injection, while mucus cortisol concentrations peaked later at approximately 62 hours post-injection. Exogenous cortisol treatments suggested relatively little transfer of cortisol from plasma to mucus, potentially reflecting differential effects of endogenous and exogenous cortisol. Our results suggest the potential utility of mucus as a sampling matrix that provides an extended window for detection of the stress response as compared to plasma. Results also suggest the utility of a multi-tissue approach to cortisol analysis with potential applications to applied fisheries research. Increased understanding of the relative scale of the cortisol response to stress (e.g. capture) will allow researchers and managers to better interpret the physiological condition and survival outcome of fish subjected to regulatory discard.

2.
J Fish Biol ; 95(2): 647-650, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30963579

RESUMEN

Cross-contamination of epidermal mucus was assessed at three sampling locations on the bodies of Pacific halibut Hippoglossus stenolepis by inducing contact between fish coated with labelled synthetic mucus and non-treated fish. Results indicate a positive relationship between sampling site exposure and sample contamination and that mucous sample cross-contamination can be mitigated by sampling in a location protected from external contact.


Asunto(s)
Epidermis/química , Lenguado/fisiología , Moco/química , Manejo de Especímenes/veterinaria , Alaska , Aletas de Animales/química , Animales , Congelación , Sistema de la Línea Lateral/química , Manejo de Especímenes/métodos , Manejo de Especímenes/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA