Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Base de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
EBioMedicine ; 106: 105229, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38970919

RESUMEN

Cerebral palsy (CP) has historically been attributed to acquired insults, but emerging research suggests that genetic variations are also important causes of CP. While microarray and whole-exome sequencing based studies have been the primary methods for establishing new CP-gene relationships and providing a genetic etiology for individual patients, the cause of their condition remains unknown for many patients with CP. Recent advancements in genomic technologies offer additional opportunities to uncover variations in human genomes, transcriptomes, and epigenomes that have previously escaped detection. In this review, we outline the use of these state-of-the-art technologies to address the molecular diagnostic challenges experienced by individuals with CP. We also explore the importance of identifying a molecular etiology whenever possible, given the potential for genomic medicine to provide opportunities to treat patients with CP in new and more precise ways.

2.
Clin Genet ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857973

RESUMEN

MPDZ, a gene with diverse functions mediating cell-cell junction interactions, receptor signaling, and binding multivalent scaffold proteins, is associated with a spectrum of clinically heterogeneous phenotypes with biallelic perturbation. Despite its clinical relevance, the mechanistic underpinnings of these variants remain elusive, underscoring the need for extensive case series and functional investigations. In this study, we conducted a systematic review of cases in the literature through two electronic databases following the PRISMA guidelines. We selected nine studies, including 18 patients, with homozygous or compound heterozygous variants in MPDZ and added five patients from four unrelated families with novel MPDZ variants. To evaluate the role of Mpdz on hearing, we analyzed available auditory electrophysiology data from a knockout murine model (Mpdzem1(IMPC)J/em1(IMPC)J) generated by the International Mouse Phenotyping Consortium. Using exome and genome sequencing, we identified three families with compound heterozygous variants, and one family with a homozygous frameshift variant. MPDZ-related disease is clinically heterogenous with hydrocephaly, vision impairment, hearing impairment and cardiovascular disease occurring most frequently. Additionally, we describe two unrelated patients with spasticity, expanding the phenotypic spectrum. Our murine analysis of the Mpdzem1(IMPC)J/em1(IMPC)J allele showed severe hearing impairment. Overall, we expand understanding of MPDZ-related phenotypes and highlight hearing impairment and spasticity among the heterogeneous phenotypes.

3.
Neurol Neuroimmunol Neuroinflamm ; 11(5): e200276, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38917381

RESUMEN

OBJECTIVES: To report the association of zinc finger and SCAN domain containing 1 antibodies (ZSCAN1-abs) with rapid-onset obesity, hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) syndrome in patients without tumor. METHODS: Patients with symptoms compatible with ROHHAD syndrome but without an associated tumor were selected from our database. Serum and CSF samples were examined for the presence of ZSCAN1-abs by an in-house cell-based assay. In addition, samples from 149 patients with several inflammatory and noninflammatory disorders and 50 healthy participants served as controls. RESULTS: Thirteen patients with ROHHAD syndrome were identified. Of these, we had paired serum/CSF samples from 6 patients and only serum from the other 7. Five of 6 patients (83.3%) with paired serum/CSF (4 children, 1 adult) had ZSCAN-abs only in CSF and 1 had antibodies in serum and CSF. ZSCAN1-abs were not detected in the remaining 7 patients with ROHHAD with only serum available or in any of the 199 control samples. DISCUSSION: Patients with ROHHAD syndrome should be investigated for the presence of ZSCAN1-abs in CSF. The antibodies do not necessarily predict the presence of a tumor. The detection of ZSCAN1-abs in an adult patient suggests that this condition also occurs beyond the pediatric age.


Asunto(s)
Autoanticuerpos , Enfermedades Hipotalámicas , Humanos , Masculino , Adulto , Femenino , Niño , Autoanticuerpos/sangre , Autoanticuerpos/líquido cefalorraquídeo , Enfermedades Hipotalámicas/inmunología , Enfermedades Hipotalámicas/sangre , Enfermedades Hipotalámicas/líquido cefalorraquídeo , Adolescente , Factores de Transcripción/inmunología , Hipoventilación/sangre , Hipoventilación/inmunología , Hipoventilación/líquido cefalorraquídeo , Enfermedades del Sistema Nervioso Autónomo/inmunología , Enfermedades del Sistema Nervioso Autónomo/sangre , Obesidad/inmunología , Adulto Joven , Persona de Mediana Edad , Preescolar , Síndrome
4.
Front Hum Neurosci ; 18: 1339324, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38835646

RESUMEN

Background: Normative childhood motor network resting-state fMRI effective connectivity is undefined, yet necessary for translatable dynamic resting-state-network-informed evaluation in pediatric cerebral palsy. Methods: Cross-spectral dynamic causal modeling of resting-state-fMRI was investigated in 50 neurotypically developing 5- to 13-year-old children. Fully connected six-node network models per hemisphere included primary motor cortex, striatum, subthalamic nucleus, globus pallidus internus, thalamus, and contralateral cerebellum. Parametric Empirical Bayes with exhaustive Bayesian model reduction and Bayesian modeling averaging informed the model; Purdue Pegboard Test scores of hand motor behavior were the covariate at the group level to determine the effective-connectivity-functional behavior relationship. Results: Although both hemispheres exhibited similar effective connectivity of motor cortico-basal ganglia-cerebellar networks, magnitudes were slightly greater on the right, except for left-sided connections of the striatum which were more numerous and of opposite polarity. Inter-nodal motor network effective connectivity remained consistent and robust across subjects. Age had a greater impact on connections to the contralateral cerebellum, bilaterally. Motor behavior, however, affected different connections in each hemisphere, exerting a more prominent effect on the left modulatory connections to the subthalamic nucleus, contralateral cerebellum, primary motor cortex, and thalamus. Discussion: This study revealed a consistent pattern of directed resting-state effective connectivity in healthy children aged 5-13 years within the motor network, encompassing cortical, subcortical, and cerebellar regions, correlated with motor skill proficiency. Both hemispheres exhibited similar effective connectivity within motor cortico-basal ganglia-cerebellar networks reflecting inter-nodal signal direction predicted by other modalities, mainly differing from task-dependent studies due to network differences at rest. Notably, age-related changes were more pronounced in connections to the contralateral cerebellum. Conversely, motor behavior distinctly impacted connections in each hemisphere, emphasizing its role in modulating left sided connections to the subthalamic nucleus, contralateral cerebellum, primary motor cortex, and thalamus. Motor network effective connectivity was correlated with motor behavior, validating its physiological significance. This study is the first to evaluate a normative effective connectivity model for the pediatric motor network using resting-state functional MRI correlating with behavior and serves as a foundation for identifying abnormal findings and optimizing targeted interventions like deep brain stimulation, potentially influencing future therapeutic approaches for children with movement disorders.

5.
Pediatr Res ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926549

RESUMEN

Cerebral palsy (CP) is the core neurodevelopmental disorder affecting movement. Several distinct movement disorders can occur in people with cerebral palsy. Dystonia is a movement disorder that causes non-velocity-dependent hypertonia and/or abnormal, often repetitive, twisting movements, and/or postures. Dystonia occurs more frequently in patients with CP than has been recognized previously, and is treated differently than other aspects of CP. Dystonia is an important cause of chronic pain, hospitalization, and musculoskeletal complications. We describe recent advances in dystonia diagnosis in patients with cerebral palsy and highlight focus areas for ongoing research and clinical care. IMPACT: Dystonia is a movement disorder that is more common in people with cerebral palsy (CP) than previously thought. Dystonia contributes to hospitalization, chronic pain, and complications in CP patients. People with dystonic CP require different tools to diagnose and treat their condition. We summarize current state of the art in dystonia in CP and identify areas of focus for future work.

6.
bioRxiv ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38798458

RESUMEN

Dystonia is the 3rd most common movement disorder. Dystonia is acquired through either injury or genetic mutations, with poorly understood molecular and cellular mechanisms. Eukaryotic initiation factor alpha (eIF2α) controls cell state including neuronal plasticity via protein translation control and expression of ATF4. Dysregulated eIF2α phosphorylation (eIF2α-P) occurs in dystonia patients and models including DYT1, but the consequences are unknown. We increased/decreased eIF2α-P and tested motor control and neuronal properties in a Drosophila model. Bidirectionally altering eIF2α-P produced dystonia-like abnormal posturing and dyskinetic movements in flies. These movements were also observed with expression of the DYT1 risk allele. We identified cholinergic and D2-receptor neuroanatomical origins of these dyskinetic movements caused by genetic manipulations to dystonia molecular candidates eIF2α-P, ATF4, or DYT1, with evidence for decreased cholinergic release. In vivo, increased and decreased eIF2α-P increase synaptic connectivity at the NMJ with increased terminal size and bouton synaptic release sites. Long-term treatment of elevated eIF2α-P with ISRIB restored adult longevity, but not performance in a motor assay. Disrupted eIF2α-P signaling may alter neuronal connectivity, change synaptic release, and drive motor circuit changes in dystonia.

8.
Hum Genet ; 143(3): 455-469, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38526744

RESUMEN

Neurons form the basic anatomical and functional structure of the nervous system, and defects in neuronal differentiation or formation of neurites are associated with various psychiatric and neurodevelopmental disorders. Dynamic changes in the cytoskeleton are essential for this process, which is, inter alia, controlled by the dedicator of cytokinesis 4 (DOCK4) through the activation of RAC1. Here, we clinically describe 7 individuals (6 males and one female) with variants in DOCK4 and overlapping phenotype of mild to severe global developmental delay. Additional symptoms include coordination or gait abnormalities, microcephaly, nonspecific brain malformations, hypotonia and seizures. Four individuals carry missense variants (three of them detected de novo) and three individuals carry null variants (two of them maternally inherited). Molecular modeling of the heterozygous missense variants suggests that the majority of them affect the globular structure of DOCK4. In vitro functional expression studies in transfected Neuro-2A cells showed that all missense variants impaired neurite outgrowth. Furthermore, Dock4 knockout Neuro-2A cells also exhibited defects in promoting neurite outgrowth. Our results, including clinical, molecular and functional data, suggest that loss-of-function variants in DOCK4 probable cause a variable spectrum of a novel neurodevelopmental disorder with microcephaly.


Asunto(s)
Proteínas Activadoras de GTPasa , Heterocigoto , Microcefalia , Mutación Missense , Trastornos del Neurodesarrollo , Humanos , Microcefalia/genética , Femenino , Masculino , Preescolar , Proteínas Activadoras de GTPasa/genética , Niño , Trastornos del Neurodesarrollo/genética , Mutación con Pérdida de Función , Animales , Discapacidades del Desarrollo/genética , Ratones , Lactante , Fenotipo , Adolescente
9.
Eur J Hum Genet ; 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38355961

RESUMEN

Translation elongation factor eEF1A2 constitutes the alpha subunit of the elongation factor-1 complex, responsible for the enzymatic binding of aminoacyl-tRNA to the ribosome. Since 2012, 21 pathogenic missense variants affecting EEF1A2 have been described in 42 individuals with a severe neurodevelopmental phenotype including epileptic encephalopathy and moderate to profound intellectual disability (ID), with neurological regression in some patients. Through international collaborative call, we collected 26 patients with EEF1A2 variants and compared them to the literature. Our cohort shows a significantly milder phenotype. 83% of the patients are walking (vs. 29% in the literature), and 84% of the patients have language skills (vs. 15%). Three of our patients do not have ID. Epilepsy is present in 63% (vs. 93%). Neurological examination shows a less severe phenotype with significantly less hypotonia (58% vs. 96%), and pyramidal signs (24% vs. 68%). Cognitive regression was noted in 4% (vs. 56% in the literature). Among individuals over 10 years, 56% disclosed neurocognitive regression, with a mean age of onset at 2 years. We describe 8 novel missense variants of EEF1A2. Modeling of the different amino-acid sites shows that the variants associated with a severe phenotype, and the majority of those associated with a moderate phenotype, cluster within the switch II region of the protein and thus may affect GTP exchange. In contrast, variants associated with milder phenotypes may impact secondary functions such as actin binding. We report the largest cohort of individuals with EEF1A2 variants thus far, allowing us to expand the phenotype spectrum and reveal genotype-phenotype correlations.

10.
Neurology ; 102(2): e208050, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38165345

RESUMEN

Pediatric movement disorders (PMD) neurologists care for infants, children, and adolescents with conditions that disrupt typical movement; serving as important subspecialist child neurologists in both academic and private practice settings. In contrast to adult movement disorders neurologists whose "bread and butter" is hypokinetic Parkinson disease, PMD subspecialty practice is often dominated by hyperkinetic movement disorders including tics, dystonia, chorea, tremor, and myoclonus. PMD neurology practice intersects with a variety of subspecialties, including neonatology, developmental pediatrics, rehabilitation medicine, epilepsy, child & adolescent psychiatry, psychology, orthopedics, genetics & metabolism, and neurosurgery. Over the past several decades, significant advancements in the PMD field have included operationalizing definitions for distinct movement disorders, recognizing the spectrum of clinical phenotypes, expanding research on genetic and neuroimmunologic causes of movement disorders, and advancing available treatments. Subspecialty training in PMD provides trainees with advanced clinical, diagnostic, procedural, and management skills that reflect the complexities of contemporary practice. The child neurologist who is fascinated by the intricacies of child motor development, appreciates the power of observation skills coupled with a thoughtful physical examination, and is excited by the challenge of the unknown may be well-suited to a career as a PMD specialist.


Asunto(s)
Corea , Neurología , Enfermedad de Parkinson , Adolescente , Adulto , Niño , Lactante , Humanos , Temblor , Neurólogos
11.
Neurogenetics ; 24(4): 311-316, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37668766

RESUMEN

Intellectual disability (ID), occurring in syndromic or non-syndromic forms, is the most common neurodevelopmental disorder. Although many cases are caused by single gene defects, ID is highly genetically heterogeneous. Biallelic variants in the transmembrane protein TMEM147 have recently been linked to intellectual disability with dysmorphic facial features. TMEM147 is believed to localize to the endoplasmic reticulum membrane and nuclear envelope and also involved in biogenesis of multi-pass membrane proteins. Here, we report two patients born to a consanguineous family with a novel loss-of-function variant; (NM_001242597.2:c.193-197del) in TMEM147 causing intellectual disability and spasticity. Whole exome sequencing and validating Sanger sequencing were utilized to confirm the identified causal variant. Our findings were in line with the previously described patients with TMEM147 variants manifesting intellectual disability as a major clinical sign but also featured spasticity as a phenotypic expansion. This study provides additional evidence for the pathogenicity of TMEM147 mutations in intellectual disability and expands the phenotypic and variant spectrum linked to this gene.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Linaje , Trastornos del Neurodesarrollo/genética , Mutación , Proteínas de la Membrana/genética
12.
medRxiv ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37745357

RESUMEN

Background and objectives: Single gene mutations are increasingly recognized as causes of cerebral palsy (CP) phenotypes, yet there is currently no standardized framework for measuring their clinical impact. We evaluated Pathogenic/Likely Pathogenic (P/LP) variants identified in individuals with CP to determine how frequently genetic testing results would prompt changes in care. Methods: We analyzed published P/LP variants in OMIM genes identified in clinical (n = 1,345 individuals) or research (n = 496) cohorts using exome sequencing of CP patients. We established a working group of clinical and research geneticists, developmental pediatricians, genetic counselors, and neurologists and performed a systematic review of existing literature for evidence of clinical management approaches linked to genetic disorders. Scoring rubrics were adapted, and a modified Delphi approach was used to build consensus and establish the anticipated impact on patient care. Overall clinical utility was calculated from metrics assessing outcome severity if left untreated, safety/practicality of the intervention, and anticipated intervention efficacy . Results: We found 140/1,841 (8%) of individuals in published CP cohorts had a genetic diagnosis classified as actionable , defined as prompting a change in clinical management based on knowledge related to the genetic etiology. 58/243 genes with P/LP variants were classified as actionable; 16 had treatment options targeting the primary disease mechanism , 16 had specific prevention strategies , and 26 had specific symptom management recommendations. The level of evidence was also graded according to ClinGen criteria; 44.6% of interventions had evidence class "D" or below. The potential interventions have clinical utility with 97% of outcomes being moderate-high severity if left untreated and 62% of interventions predicted to be of moderate-high efficacy . Most interventions (71%) were considered moderate-high safety/practicality . Discussion: Our findings indicate that actionable genetic findings occur in 8% of individuals referred for genetic testing with CP. Evaluation of potential efficacy , outcome severity , and intervention safety / practicality indicates moderate-high clinical utility of these genetic findings. Thus, genetic sequencing to identify these individuals for precision medicine interventions could improve outcomes and provide clinical benefit to individuals with CP. The relatively limited evidence base for most interventions underscores the need for additional research.

13.
Orphanet J Rare Dis ; 18(1): 225, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37537625

RESUMEN

BACKGROUND: Mutations in the NMDA receptor are known to disrupt glutamatergic signaling crucial for early neurodevelopment, often leading to severe global developmental delay/intellectual disability, epileptic encephalopathy, and cerebral palsy phenotypes. Both seizures and movement disorders can be highly treatment-refractory. RESULTS: We describe a targeted ABA n-of-1 treatment trial with intrathecal MgSO4, rationally designed based on the electrophysiologic properties of this gain of function mutation in the GRIN1 NMDA subunit. CONCLUSION: Although the invasive nature of the trial necessitated a short-term, non-randomized, unblinded intervention, quantitative longitudinal neurophysiologic monitoring indicated benefit, providing class II evidence in support of intrathecal MgSO4 for select forms of GRIN disorders.


Asunto(s)
Discapacidad Intelectual , Magnesio , Humanos , Discapacidad Intelectual/genética , Magnesio/metabolismo , Mutación/genética , Proteínas del Tejido Nervioso/genética , Receptores de N-Metil-D-Aspartato/genética , Convulsiones/genética , Estudios de Casos Únicos como Asunto
14.
Dis Model Mech ; 16(9)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37470098

RESUMEN

AGAP1 is an Arf1 GTPase-activating protein that regulates endolysosomal trafficking. Damaging variants have been linked to cerebral palsy and autism. We report three new cases in which individuals had microdeletion variants in AGAP1. The affected individuals had intellectual disability (3/3), autism (3/3), dystonia with axial hypotonia (1/3), abnormalities of brain maturation (1/3), growth impairment (2/3) and facial dysmorphism (2/3). We investigated mechanisms potentially underlying AGAP1 variant-mediated neurodevelopmental impairments using the Drosophila ortholog CenG1a. We discovered reduced axon terminal size, increased neuronal endosome abundance and elevated autophagy compared to those in controls. Given potential incomplete penetrance, we assessed gene-environment interactions. We found basal elevation in the phosphorylation of the integrated stress-response protein eIF2α (or eIF2A) and inability to further increase eIF2α phosphorylation with subsequent cytotoxic stressors. CenG1a-mutant flies had increased lethality from exposure to environmental insults. We propose a model wherein disruption of AGAP1 function impairs endolysosomal trafficking, chronically activating the integrated stress response and leaving AGAP1-deficient cells susceptible to a variety of second-hit cytotoxic stressors. This model may have broader applicability beyond AGAP1 in instances where both genetic and environmental insults co-occur in individuals with neurodevelopmental disorders.


Asunto(s)
Interacción Gen-Ambiente , Discapacidad Intelectual , Humanos , Endosomas , Discapacidad Intelectual/genética , Proteínas Activadoras de GTPasa
15.
bioRxiv ; 2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37503287

RESUMEN

Dystonia is common, debilitating, often medically refractory, and difficult to diagnose. The gold standard for both clinical and mouse model dystonia evaluation is subjective assessment, ideally by expert consensus. However, this subjectivity makes translational quantification of clinically-relevant dystonia metrics across species nearly impossible. Many mouse models of genetic dystonias display abnormal striatal cholinergic interneuron excitation, but few display subjectively dystonic features. Therefore, whether striatal cholinergic interneuron pathology causes dystonia remains unknown. To address these critical limitations, we first demonstrate that objectively quantifiable leg adduction variability correlates with leg dystonia severity in people. We then show that chemogenetic excitation of striatal cholinergic interneurons in mice causes comparable leg adduction variability in mice. This clinically-relevant dystonic behavior in mice does not occur with acute excitation, but rather develops after 14 days of ongoing striatal cholinergic interneuron excitation. This requirement for prolonged excitation recapitulates the clinically observed phenomena of a delay between an inciting brain injury and subsequent dystonia manifestation and demonstrates a causative link between chronic striatal cholinergic interneuron excitation and clinically-relevant dystonic behavior in mice. Therefore, these results support targeting striatal ChIs for dystonia drug development and suggests early treatment in the window following injury but prior to dystonia onset. One Sentence Summary: Chronic excitation of dorsal striatal cholinergic interneuron causes clinically-relevant dystonic phenotypes in mice.

16.
J Med Genet ; 60(10): 1026-1034, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37197783

RESUMEN

BACKGROUND: RNA polymerase III-related or 4H leukodystrophy (POLR3-HLD) is an autosomal recessive hypomyelinating leukodystrophy characterized by neurological dysfunction, hypodontia and hypogonadotropic hypogonadism. The disease is caused by biallelic pathogenic variants in POLR3A, POLR3B, POLR1C or POLR3K. Craniofacial abnormalities reminiscent of Treacher Collins syndrome have been originally described in patients with POLR3-HLD caused by biallelic pathogenic variants in POLR1C. To date, no published studies have appraised in detail the craniofacial features of patients with POLR3-HLD. In this work, the specific craniofacial characteristics of patients with POLR3-HLD associated with biallelic pathogenic variants in POLR3A, POLR3B and POLR1C are described. METHODS: The craniofacial features of 31 patients with POLR3-HLD were evaluated, and potential genotype-phenotype associations were evaluated. RESULTS: Various craniofacial abnormalities were recognized in this patient cohort, with each individual presenting at least one craniofacial abnormality. The most frequently identified features included a flat midface (61.3%), a smooth philtrum (58.0%) and a pointed chin (51.6%). In patients with POLR3B biallelic variants, a thin upper lip was frequent. Craniofacial anomalies involving the forehead were most commonly associated with biallelic variants in POLR3A and POLR3B while a higher proportion of patients with POLR1C biallelic variants demonstrated bitemporal narrowing. CONCLUSION: Through this study, we demonstrated that craniofacial abnormalities are common in patients with POLR3-HLD. This report describes in detail the dysmorphic features of POLR3-HLD associated with biallelic variants in POLR3A, POLR3B and POLR1C.


Asunto(s)
Enfermedades Desmielinizantes , Enfermedades Neurodegenerativas , Humanos , ARN Polimerasa III/genética , Patrón de Herencia , ARN Polimerasas Dirigidas por ADN/genética
17.
Genet Med ; 25(8): 100885, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37165955

RESUMEN

PURPOSE: Missense variants clustering in the BTB domain region of RHOBTB2 cause a developmental and epileptic encephalopathy with early-onset seizures and severe intellectual disability. METHODS: By international collaboration, we assembled individuals with pathogenic RHOBTB2 variants and a variable spectrum of neurodevelopmental disorders. By western blotting, we investigated the consequences of missense variants in vitro. RESULTS: In accordance with previous observations, de novo heterozygous missense variants in the BTB domain region led to a severe developmental and epileptic encephalopathy in 16 individuals. Now, we also identified de novo missense variants in the GTPase domain in 6 individuals with apparently more variable neurodevelopmental phenotypes with or without epilepsy. In contrast to variants in the BTB domain region, variants in the GTPase domain do not impair proteasomal degradation of RHOBTB2 in vitro, indicating different functional consequences. Furthermore, we observed biallelic splice-site and truncating variants in 9 families with variable neurodevelopmental phenotypes, indicating that complete loss of RHOBTB2 is pathogenic as well. CONCLUSION: By identifying genotype-phenotype correlations regarding location and consequences of de novo missense variants in RHOBTB2 and by identifying biallelic truncating variants, we further delineate and expand the molecular and clinical spectrum of RHOBTB2-related phenotypes, including both autosomal dominant and recessive neurodevelopmental disorders.


Asunto(s)
Epilepsia , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Trastornos del Neurodesarrollo/genética , Epilepsia/genética , Epilepsia/patología , Estudios de Asociación Genética , Discapacidad Intelectual/genética , Fenotipo , GTP Fosfohidrolasas/genética , Proteínas de Unión al GTP/genética , Proteínas Supresoras de Tumor/genética
18.
bioRxiv ; 2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37163102

RESUMEN

DNA transposable elements and transposase-derived genes are present in most living organisms, including vertebrates, but their function is largely unknown. PiggyBac Transposable Element Derived 5 (PGBD5) is an evolutionarily conserved vertebrate DNA transposase-derived gene with retained nuclease activity in cells. Vertebrate brain development is known to be associated with prominent neuronal cell death and DNA breaks, but their causes and functions are not well understood. Here, we show that PGBD5 contributes to normal brain development in mice and humans, where its deficiency causes disorder of intellectual disability, movement and seizures. In mice, Pgbd5 is required for the developmental induction of post-mitotic DNA breaks and recurrent somatic genome rearrangements in neurons. Together, these studies nominate PGBD5 as the long-hypothesized neuronal DNA nuclease required for brain function in mammals.

19.
bioRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778426

RESUMEN

AGAP1 is an Arf1 GAP that regulates endolysosomal trafficking. Damaging variants have been linked to cerebral palsy and autism. We report 3 new individuals with microdeletion variants in AGAP1 . Affected individuals have intellectual disability (3/3), autism (3/3), dystonia with axial hypotonia (1/3), abnormalities of brain maturation (1/3), growth impairment (2/3) and facial dysmorphism (2/3). We investigated mechanisms potentially underlying AGAP1 neurodevelopmental impairments using the Drosophila ortholog, CenG1a . We discovered reduced axon terminal size, increased neuronal endosome abundance, and elevated autophagy at baseline. Given potential incomplete penetrance, we assessed gene-environment interactions. We found basal elevation in phosphorylation of the integrated stress-response protein eIF2α and inability to further increase eIF2α-P with subsequent cytotoxic stressors. CenG1a -mutant flies have increased lethality from exposure to environmental insults. We propose a model wherein disruption of AGAP1 function impairs endolysosomal trafficking, chronically activating the integrated stress response, and leaving AGAP1-deficient cells susceptible to a variety of second hit cytotoxic stressors. This model may have broader applicability beyond AGAP1 in instances where both genetic and environmental insults co-occur in individuals with neurodevelopmental disorders. Summary statement: We describe 3 additional patients with heterozygous AGAP1 deletion variants and use a loss of function Drosophila model to identify defects in synaptic morphology with increased endosomal sequestration, chronic autophagy induction, basal activation of eIF2α-P, and sensitivity to environmental stressors.

20.
Clin Genet ; 103(2): 156-166, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36224108

RESUMEN

CNOT2 haploinsufficiency underlies a rare neurodevelopmental disorder named Intellectual Developmental disorder with NAsal speech, Dysmorphic Facies, and variable Skeletal anomalies (IDNADFS, OMIM 618608). The condition clinically overlaps with chromosome 12q15 deletion syndrome, suggesting a major contribution of CNOT2 haploinsufficiency to the latter. CNOT2 is a member of the CCR4-NOT complex, which is a master regulator of multiple cellular processes, including gene expression, RNA deadenylation, and protein ubiquitination. To date, less than 20 pathogenic 12q15 microdeletions encompassing CNOT2, together with a single truncating variant of the gene, and two large intragenic deletions have been reported. Due to the small number of affected subjects described so far, the clinical profile of IDNADFS has not been fully delineated. Here we report five unrelated individuals, three of which carrying de novo intragenic CNOT2 variants, one presenting with a multiexon intragenic deletion, and an additional case of 12q15 microdeletion syndrome. Finally, we assess the features of IDNADFS by reviewing published and present affected individuals and reevaluate the clinical phenotype of this neurodevelopmental disorder.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Deleción Cromosómica , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Fenotipo , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA