RESUMEN
The ß-delayed one- and two-neutron emission probabilities (P_{1n} and P_{2n}) of 20 neutron-rich nuclei with N≥82 have been measured at the RIBF facility of the RIKEN Nishina Center. P_{1n} of ^{130,131}Ag, ^{133,134}Cd, ^{135,136}In, and ^{138,139}Sn were determined for the first time, and stringent upper limits were placed on P_{2n} for nearly all cases. ß-delayed two-neutron emission (ß2n) was unambiguously identified in ^{133}Cd and ^{135,136}In, and their P_{2n} were measured. Weak ß2n was also detected from ^{137,138}Sn. Our results highlight the effect of the N=82 and Z=50 shell closures on ß-delayed neutron emission probability and provide stringent benchmarks for newly developed macroscopic-microscopic and self-consistent global models with the inclusion of a statistical treatment of neutron and γ emission. The impact of our measurements on r-process nucleosynthesis was studied in a neutron star merger scenario. Our P_{1n} and P_{2n} have a direct impact on the odd-even staggering of the final abundance, improving the agreement between calculated and observed Solar System abundances. The odd isotope fraction of Ba in r-process-enhanced (r-II) stars is also better reproduced using our new data.
RESUMEN
We report the first (in)elastic scattering measurement of ^{25}Al+p with the capability to select and measure in a broad energy range the proton resonances in ^{26}Si contributing to the ^{22}Mg(α,p) reaction at type I x-ray burst energies. We measured spin-parities of four resonances above the α threshold of ^{26}Si that are found to strongly impact the ^{22}Mg(α,p) rate. The new rate advances a state-of-the-art model to remarkably reproduce light curves of the GS 1826-24 clocked burster with mean deviation <9% and permits us to discover a strong correlation between the He abundance in the accreting envelope of the photospheric radius expansion burster and the dominance of ^{22}Mg(α,p) branch.
RESUMEN
In this Letter, the observation of two previously unknown isotopes is presented for the first time: ^{72}Rb with 14 observed events and ^{77}Zr with one observed event. From the nonobservation of the less proton-rich nucleus ^{73}Rb, we derive an upper limit for the ground-state half-life of 81 ns, consistent with the previous upper limit of 30 ns. For ^{72}Rb, we have measured a half-life of 103(22) ns. This observation of a relatively long-lived odd-odd nucleus, ^{72}Rb, with a less exotic odd-even neighbor, ^{73}Rb, being unbound shows the diffuseness of the proton drip line and the possibility of sandbanks to exist beyond it. The ^{72}Rb half-life is consistent with a 5^{+}â5/2^{-} proton decay with an energy of 800-900 keV, in agreement with the atomic mass evaluation proton-separation energy as well as results from the finite-range droplet model and shell model calculations using the GXPF1A interaction. However, we cannot explicitly exclude the possibility of a proton transition between 9^{+}(^{72}Rb)â9/2^{+}(^{71}Kr) isomeric states with a broken mirror symmetry. These results imply that ^{72}Kr is a strong waiting point in x-ray burst rp-process scenarios.
RESUMEN
The ß-decay half-lives of 94 neutron-rich nuclei ^{144-151}Cs, ^{146-154}Ba, ^{148-156}La, ^{150-158}Ce, ^{153-160}Pr, ^{156-162}Nd, ^{159-163}Pm, ^{160-166}Sm, ^{161-168}Eu, ^{165-170}Gd, ^{166-172}Tb, ^{169-173}Dy, ^{172-175}Ho, and two isomeric states ^{174m}Er, ^{172m}Dy were measured at the Radioactive Isotope Beam Factory, providing a new experimental basis to test theoretical models. Strikingly large drops of ß-decay half-lives are observed at neutron-number N=97 for _{58}Ce, _{59}Pr, _{60}Nd, and _{62}Sm, and N=105 for _{63}Eu, _{64}Gd, _{65}Tb, and _{66}Dy. Features in the data mirror the interplay between pairing effects and microscopic structure. r-process network calculations performed for a range of mass models and astrophysical conditions show that the 57 half-lives measured for the first time play an important role in shaping the abundance pattern of rare-earth elements in the solar system.
RESUMEN
The cross sections of the ^{7}Be(n,α)^{4}He reaction for p-wave neutrons were experimentally determined at E_{c.m.}=0.20-0.81 MeV slightly above the big bang nucleosynthesis (BBN) energy window for the first time on the basis of the detailed balance principle by measuring the time-reverse reaction. The obtained cross sections are much larger than the cross sections for s-wave neutrons inferred from the recent measurement at the n_TOF facility in CERN, but significantly smaller than the theoretical estimation widely used in the BBN calculations. The present results suggest the ^{7}Be(n,α)^{4}He reaction rate is not large enough to solve the cosmological lithium problem, and this conclusion agrees with the recent result from the direct measurement of the s-wave cross sections using a low-energy neutron beam and the evaluated nuclear data library ENDF/B-VII.1.
RESUMEN
Masses of ^{52g,52m}Co were measured for the first time with an accuracy of â¼10 keV, an unprecedented precision reached for short-lived nuclei in the isochronous mass spectrometry. Combining our results with the previous ß-γ measurements of ^{52}Ni, the T=2, J^{π}=0^{+} isobaric analog state (IAS) in ^{52}Co was newly assigned, questioning the conventional identification of IASs from the ß-delayed proton emissions. Using our energy of the IAS in ^{52}Co, the masses of the T=2 multiplet fit well into the isobaric multiplet mass equation. We find that the IAS in ^{52}Co decays predominantly via γ transitions while the proton emission is negligibly small. According to our large-scale shell model calculations, this phenomenon has been interpreted to be due to very low isospin mixing in the IAS.
RESUMEN
In an experiment with the BigRIPS separator at the RIKEN Nishina Center, we observed two-proton (2p) emission from ^{67}Kr. At the same time, no evidence for 2p emission of ^{59}Ge and ^{63}Se, two other potential candidates for this exotic radioactivity, could be observed. This observation is in line with Q value predictions which pointed to ^{67}Kr as being the best new candidate among the three for two-proton radioactivity. ^{67}Kr is only the fourth 2p ground-state emitter to be observed with a half-life of the order of a few milliseconds. The decay energy was determined to be 1690(17) keV, the 2p emission branching ratio is 37(14)%, and the half-life of ^{67}Kr is 7.4(30) ms.
RESUMEN
The half-lives of 20 neutron-rich nuclei with Z=27-30 have been measured at the RIBF, including five new half-lives of (76)Co(21.7(-4.9)(+6.5) ms), (77)Co(13.0(-4.3)(+7.2) ms), (79)Ni(43.0(-7.5)(+8.6) ms), (80)Ni(23.9(-17.2)(+26.0) ms), and (81)Cu(73.2 ± 6.8 ms). In addition, the half-lives of (73-75)Co, (74-78)Ni, (78-80)Cu, and (80-82)Zn were determined with higher precision than previous works. Based on these new results, a systematic study of the ß-decay half-lives has been carried out, which suggests a sizable magicity for both the proton number Z = 28 and the neutron number N=50 in (78)Ni.
RESUMEN
The low-lying states in ¹°6Zr and ¹°8Zr have been investigated by means of ß-γ and isomer spectroscopy at the radioactive isotope beam factory (RIBF), respectively. A new isomer with a half-life of 620 ± 150 ns has been identified in ¹°8Zr. For the sequence of even-even Zr isotopes, the excitation energies of the first 2⺠states reach a minimum at N = 64 and gradually increase as the neutron number increases up to N = 68, suggesting a deformed subshell closure at N = 64. The deformed ground state of ¹°8Zr indicates that a spherical subshell gap predicted at N = 70 is not large enough to change the ground state of ¹°8Zr to the spherical shape. The possibility of a tetrahedral shape isomer in ¹°8Zr is also discussed.
RESUMEN
The ß-decay half-lives of 38 neutron-rich isotopes from (36)Kr to (43)Tc have been measured; the half-lives of (100)Kr, (103-105)Sr, (106-108)Y, (108-110)Zr, (111,112)Nb, (112-115)Mo, and (116,117)Tc are reported here. The results when compared with previous standard models indicate an overestimation in the predicted half-lives by a factor of 2 or more in the A≈110 region. A revised model based on the second generation gross theory of ß decay better predicts the measured half-lives and suggests a more rapid flow of the rapid neutron-capture process (r-matter flow) through this region than previously predicted.
RESUMEN
The 21Na(p,gamma)22Mg reaction is expected to play an important role in the nucleosynthesis of 22Na in oxygen-neon novae. The decay of 22Na leads to the emission of a characteristic 1.275 MeV gamma-ray line. This report provides the first direct measurement of the rate of this reaction using a radioactive 21Na beam, and discusses its astrophysical implications. The energy of the important state was measured to be E(c.m.)=205.7+/-0.5 keV with a resonance strength omegagamma=1.03+/-0.16(stat)+/-0.14(sys) meV.
RESUMEN
The reaction rate of the stellar reaction 13C(alpha,n)16O, which is currently considered to be the main neutron source for the slow (s) process at low energies, has been rederived using the direct alpha-transfer reaction 13C(6Li,d)17O leading to the subthreshold state at 6.356 MeV in 17O. The contribution of the subthreshold state is found to be much smaller than the currently accepted predictions for the main neutron source of the s process, indicating less of a role of this reaction as the neutron source for the s-process scenario in low-mass stars at the asymptotic giant branch.
RESUMEN
The charge-exchange reaction 60Ni(13C,13N)60Co at E/A=100 MeV has been studied to locate isovector (deltaT=1) non-spin-flip (deltaS=0) giant resonances. Besides the giant dipole resonance at E(x)=8.7 MeV, another resonance has been observed at E(x)=20 MeV with a width of 9 MeV. Distorted-wave Born approximation analysis on the angular distribution clearly indicated the L=2 multipolarity, attributing the E(x)=20 MeV state to the giant isovector quadrupole resonance.
RESUMEN
Thyroid carcinomas occur in association with familial adenomatous polyposis (FAP), and some are the first symptom of FAP. Although several histological features have been reported, the cytopathology of FAP-associated thyroid carcinoma has not yet been described. We report on two cases of FAP-associated thyroid carcinomas diagnosed by fine-needle aspiration biopsy and one case imprinted after resection. All 3 patients belonged to the same family, and thyroid carcinoma was the first symptom of the proband. Cytological features include fascicular or whorl formation of spindle cells with papillary, follicular, and/or solid architectures, in addition to the typical features of papillary carcinoma. The cytological features of FAP-associated thyroid carcinomas are characteristic and may suggest FAP.
Asunto(s)
Poliposis Adenomatosa del Colon/patología , Carcinoma Papilar/patología , Neoplasias de la Tiroides/patología , Poliposis Adenomatosa del Colon/complicaciones , Adolescente , Biopsia con Aguja , Carcinoma Papilar/complicaciones , Carcinoma Papilar/cirugía , Niño , Femenino , Genes APC , Humanos , Mutación , Neoplasias de la Tiroides/complicaciones , Neoplasias de la Tiroides/cirugíaRESUMEN
We studied the level of analgesia obtained with epidural injection of 2% mepivacaine using combined spinal and epidural analgesia (CSE) and compared with the level obtained by epidural analgesia (EA). We inserted a catheter into the epidural space through the L2/3 interspace, and hyperbaric tetracaine was injected through the L3/4 interspace with 26G spinal needle in thirty patients for CSE. We checked the the level of analgesia 90 min after spinal anesthesia. After this, 23 out of 30 patients showed the extension of analgesia 15 min after injection of mepivacaine into the epidural catheter. In these patients, the level of analgesia and the dose of mepivacaine showed the regression line Y = 10.2-0.4X (Y: the level of analgesia, X: the dose of 2% mepivacaine, P < 0.05). We also showed the regression line Y = 16.1-0.7X (P < 0.05) for EA 15 min after epidural injection of mepivacaine in other 23 patients. To achieve the same level of analgesia of Th8 or Th6 with CSE and EA, the doses for epidural injection were calculated as 5.5 ml, 10.5 ml with CSE and 11.5 ml, 14.4 ml with EA, respectively. These results show that the epidural dose of local anesthetic for CSE is 1/2 to 2/3 of that necessary for EA.